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ABSTRACT

The transport industry is passing through a revolution driven by the Advanced Driver
Assistance Systems. They are designed for helping the driving, with benefits in terms of
security, comfort, time, money and energy. These technologies are a growing market, and
they are being improved towards autonomous vehicles.

However, the advance of Advanced Driver Assistance Systems is a challenge that
requires the development of new technologies. Among them, the trajectory planning is one of
the most relevant. The problem becomes more complex when it involves articulated vehicles,
like trucks and buses, since the kinematics conditions differs from a regular vehicle.

This Project was conceived with the goal of design a solution for the trajectory
planning of articulated vehicles. To do so, a tool was developed based on an algorithm called
Rapidly-exploring random tree. The problem was also modeled using a simulation software in
order to test the viability of the trajectories created by the tool.

Besides the details regarding the development of this tool, this document will also
present the results of this project. The tool was capable of generating trajectories with success

and the simulation proved them to be feasible.

Keywords: Articulated vehicles, trajectory planning, Rapidly-exploring random tree.



RESUMO

O setor de transportes passa atualmente por uma revolucdo impulsionada pelos
Sistemas Avancados de Assisténcia ao Motorista (Advanced Driver Assistance Systems, em
inglés). Eles sdo desenhados para colaborar na tarefa de conducdo, apresentando beneficios
em termos de seguranca, conforto, tempo, dinheiro e energia. Tais tecnologias estdo em
ascensdo, sendo aprimoradas progressivamente rumo aos veiculos autbnomos.

No entanto, o avanco de Sistemas Avancados de Assisténcia ao Motorista € um
desafio que requer novos desenvolvimentos em tecnologias. Dentre elas, o planejamento de
trajetérias € um dos mais relevantes. O problema se torna mais complexo quando envolve
veiculos articulados, como caminhd@es e 6nibus, pois as condi¢des cinematicas diferem de um
veiculo comum.

Este projeto foi concebido com o objetivo de desenvolver uma solucdo para o
planejamento de trajetérias para veiculos articulados. Para isso, uma ferramenta foi
desenvolvida com base em um algoritmo de planejamento chamado Rapidly-exploring
random tree. O problema também foi modelado através de um software de simulacdo para
testar a viabilidade das trajetérias criadas pela ferramenta.

Alem dos detalhes por tréds do desenvolvimento desta ferramenta, este documento
apresentard também os resultados deste projeto. A ferramenta proposta foi capaz de gerar

trajetérias com sucesso, e tais trajetdrias se mostraram viaveis através da simulacéo.

Palavras-chave: Veiculos articulados, planejamento de trajetoria, Rapidly-exploring

random tree.
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1. INTRODUCTION
1.1. Advanced Driver Assistance Systems

Advanced Driver Assistance Systems (ADAS) are intelligent systems developed to
automate, adapt and enhance vehicles systems for safety and better driving, helping the driver
during the driving process. Safety features are able to alert the driver to potential problems,
avoid collisions and even take control of the vehicle, whereas adaptive features might provide
adaptive cruise control, automate lighting and braking, keep the driver in the correct lane,
among other features.

These technologies are often split into six different categories concerning the level of
automation. Level O represents no automation at all while level 5 corresponds to full
automation. Today’s level is between 1 and 2 since there are examples of vehicles on the
market such as Tesla Model S and Mercedes-Benz S65 AMG which allow the driver to keep
his hands temporarily off the steering wheel, even though road and traffic must be constantly

monitored. The figure below describes better all ADAS automation levels.

— NON-MONITORED DRIVING ——

<E>E>  EYES ON D> D> ~—~~— EYES OFF ~—r

@ e & G o MG MmO

Driver is continuously Driver is continuously Driver has to monitor Driver does not have to Driver is not required
exercising longitudinal exercising longitudinal the system at all times monitor the system at all during defined use case
AND lateral control OR lateral control times; must always be

in a position to resume
control

System has longitudinal
AND lateral control in
a specific use case.
System recognizes

System can cope

the performance limits System can cope with all situations

Lateral or longitudinal System has longitudinal and requests driver to with all situations automatically during the
control is accomplished and lateral control in a resume control within a automatically in a entire journey. No driver
by the system specific use case sufficient time margin defined use case required
tevet J s - 4 - J - J |
PARTIAL CONDITIONAL HIGH FULL
AUTOMATION AUTOMATION AUTOMATION AUTOMATION

Figure 1: ADAS automation levels. Reprinted from (1).

With ADAS progressively improving towards fully autonomous vehicles, many
applications can be found on the field of trajectory planning. In the future, cooperative
trajectory planning may be responsible for the entire control of the traffic within big cities,

automating intersection crossings for instance. Moreover, applications in industry are vast,
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mainly in areas where the automation represents reducing costs and enhancing productivity
such as the agricultural industry.

The trajectory planning becomes an even more challenging subject when applied to
articulated vehicles. The reason is that the presence of a spherical joint increases the number

of variables needed to describe the system.

1.2. Objectives

In this context, this project aims to work with ADAS within the heart of the
automobile’s academia and industry, researching deeper the problem of trajectory planning
for articulated vehicles in diverse contexts.

The objective is to develop a trajectory planning method to be applied on articulated
vehicles. Additionally, the project also plans to model physically this kind of vehicle and
simulate the trajectories generated. This way, the planned trajectory as well as the method

itself, can be tested and validated.

1.3. Engaged parts and motivations

In order to achieve the objectives traced and presented above, three parts committed
to work together: the students and authors of the project; the academic project advisor; and a
private company.

The project was developed by Miguel Agostinho Pereira Neto and Milter Shiniti
Pesce, both current mechatronics engineering students at Escola Politécnica da Universidade
de S&o Paulo (EPUSP) and double-graduated in general engineering at Ecole Centrale de
Lyon, France.

Miguel has been part of the Advanced Driver Assistance Systems team of Siemens
Industry Software for 6 months during his internship at Lyon, where he could be in touch with
ADAS and autonomous vehicles, the subject of this final-year project. Milter has work for 6
months as a software developer intern at Gemalto, a digital security multinational, in the
region of Paris in France.

Working within the engineering industry field abroad gave both students the
opportunity to see the real context of creating and developing cutting-edge technology, which

unfortunately is rare in Brazil. For two mere engineering students, the possibility to achieve
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big goals and be part of researches that could lead to great changes in the human society even
during the university is an unparalleled opportunity.

ADAS and autonomous vehicles are subjects that fit perfectly into the high-level
research topics and are intensively growing in industry. This truly motivated the students to
develop and study trajectory planning methods and simulations.

The academic project advisor is Thiago de Castro Martins, professor in the
Department of Mechatronics and Mechanical Systems Engineering of EPUSP. He has B.S.
degree in mechanical engineering and a Ph.D. degree, both from EPUSP. He has already had
experience with the matter as he has worked with trajectory planning at the Centre National
de la Recherche Scientifique (CNRS), in France.

The third part of the project is the company Siemens, here represented by the
engineer Pierric Toulemont. Largest engineering company in Europe, Siemens works closely
to many car makers and OEMs (Original Equipment Manufacturer). Through the feedbacks
and demands that both development and engineering service teams received from its clients,
Siemens became aware that the market is looking for trajectory planning technologies. The
company already received demands from many sectors including agricultural industry, trucks
automation, port maintenance and even valet parking for cars.

One of Siemens’ many divisions is focused on the development of Industry
Softwares. The office based in Lyon (France) has about 150 people developing, providing
engineering support for and promoting the 1D Multiphysics Siemens’ simulation software,
called LMS Imagine.Lab Amesim.

Amesim is a system simulation platform which allows characterizing static and
dynamic behavior of a component or a system. The physical modeling is based on a bond
graph representation, and the solver uses time derivative equations to compute the
simulations. Its big advantages lie on its usability and its small simulation time compared to
3D simulation software. It allows an easy simulation of big and complex multi-physics
systems. Therefore, Amesim is mainly used in the domains of automotive and aeronautics
where systems are obviously complex to configure and analyze, even as ADAS and

autonomous vehicles.
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Figure 2: Amesim Multiphysics usage example. Reprinted from (2)

The partnership with the company Siemens Industry Software provided Amesim
academic licenses for the students. Thus, Amesim became the software used to model the
articulated vehicles and simulate its behavior when executing planned trajectories. Amesim
provides trustworthy modeling of all subsystems of a vehicle and it is a very powerful tool to
enhance the simulation part of the project.

Therefore, this project represents the point where industry meets university and real
problems faced by several companies can be studied and solved together. For the university,
working on a relevant and recent theme is quite important because it allows the institution to
participate on present industrial problem solving. For the industry, a scientific research
assuring that its solutions and products are efficient and providing a solid theoretical
background is extremely useful to promote its products, mainly to its customers and

supporters.

2. STATE OF THE ART

In this section, a description of the work already developed concerning trajectory
planning will be described (3). The goal is to introduce the basics concepts that are used in
this project as well as to present the existing tools to attack the trajectory planning problem.

First of all, the difference among path and trajectory must be clarified.
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A path consists on a sequence of configurations taking into account boundary
conditions at the beginning and at the end. It basically means a geometrical trace that the
concerned vehicle should follow without any collision.

Finally, a trajectory represents a sequence of states visited by the vehicle,
parameterized by velocity, time, and kinematics. Trajectory planning tries to outline the actual
vehicle’s transition from one feasible state to the next, regarding kinematics limits based on
vehicle dynamics and route boundaries.

Essentially trajectory planning encompasses path planning in addition to planning

how to move based on velocity, time, and kinematics.
2.1. Planning technique

In general, planning for autonomous or intelligent driving is divided into four classes
(3), including route planning, path planning, maneuver choice and trajectory planning. The

flowchart of the trajectory planning can be seen in Figure 3.

Route
planning

|

Search space
for planning

|

Path search

Feedback

Input Maneuver

b search
Qnal pay/

Trajectory
planning

Figure 3: Flowchart of trajectory planning. Recreated from (3)

Page | 14



Route planning is simply finding the global route from a given origin to a
destination. It does not take vehicular dynamics into account, so it is not within the scope of
the project.

Once the route is defined, it is necessary to represent the environment in a way that
enables the path planning. Therefore, the physical space shall be transformed in a state space
that represents the set of all possible states that a vehicle can be in. The state space includes
information like the vehicle position and orientation. Some search space algorithms are
presented in 2.2.

Path planning is the task to find a path in the state space that connects an initial
configuration to a final configuration and that does not collide with any obstacle. The path
planning can be tied to a maneuver search. A brief description of path planning algorithms is
presented in 2.3.

Maneuver is a high-level characterization of the motion of the vehicle, with regard to
the vehicle’s position, speed and steering. For instance, a maneuver can be “going straight
forward” or “turning left”.

So, the path planning acts as input to the search for the best maneuver, i.e. the
maneuver which places the vehicle as close to the planned path as it is possible. Based on the
best maneuver, the path search can change, as shown with a feedback loop between these two
modules.

Finally, once the path is finalized, the final trajectory planning is generated.

2.2. Search space for planning

When planning a vehicle motion, the space must be discretized and digitally
represented in a way that the physical space is transformed into a state space describing the
vehicle position, orientation, velocities and all other useful measures. The efficiency of this
space description is essential to optimize the computational speed.

Five algorithms are briefly described next and are figuratively represented in Figure
4. These algorithm techniques can be simultaneously employed, improving the planning
capabilities. Once the search space is built, the planning algorithms are ready to start looking
for the best path and trajectory.

2.2.1. Voronoi Diagrams
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Voronoi Diagrams, also called Dirichlet tessellation, is a partitioning of a plane into
regions based on distance to points in a specific subset of the plane. Basically, the algorithm
tries to minimize the distance between the vehicle and its surrounding obstacles. This kind of
technique is usually employed on static environments such as parking lots, once dynamic

obstacles may cause discontinuities and be unsuitable for non-holonomic vehicles.

2.2.2. Occupancy grids and costmaps

These both methods work similarly, discretizing the state space into a grid whose
cells are associated to the probability of each cell being occupied by an obstacle or to the

proportional cost of traversing such cell.

2.2.3. State Lattices

State Lattices are seen as a generalization of grid methods once Lattices are
constructed of simple motion primitives connecting one state to another, in terms of position,
curvature or time. Consequently, it connects the initial state to the final one, regarding the

boundary conditions.

2.2.4. Driving corridors

Driving corridors represent a continuous collision-free space that is limited by
environment and obstacles boundaries. Each vehicle has its own driving corridor and its
center line will form the path around which the trajectory to be followed is planned.

Once this technique is very dependent of the environment representation, some

constraints may appear and compromise real-time planning.
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Figure 4: (a) Voronoi Diagram; (b) Occupancy Grid; (c) Costmap; (d) State Lattice; and (e) Driving Corridor.
Recreated from (3).

2.3. Path Planning

The step of finding the best geometric path for the vehicle to follow is usually
divided into two different approaches.

The first one uses incremental sampling or discrete geometric structures to find the
best sequence of actions to be realized. It re-uses information from previous searches to
increase search speed. Two incremental search methods will be presented in this section: the
Rapidly-exploring random tree and the Lattice Planners.

The second one is a local search that uses multiple final states to find the single best
action.

2.3.1. Rapidly-exploring random tree (RRT)
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The Rapidly-exploring random tree (RRT) algorithm creates a data tree. This tree
basically consists of feasible paths that are built online by stochastically extending branches
towards randomly generated target configurations.

RRT is probabilistic complete, which means if there is a solution for the path
planning problem, the probability of the algorithm finding it goes to one as the iteration time
goes to infinity. Moreover, this method can be easily implemented in real-time and guarantees
kinematics feasibility. However, it can create jerky paths and does not verify collision
checking, what may be problematic and time-consuming in an environment full of obstacles.

Furthermore, there is always a compromise between optimization and exploration speed.

2.3.2. Lattice planners

As already described, state lattices construct a discrete search space which enables
relevant state continuity. Instead of randomly explore the states, this method acquires the goal
state in a deterministic way, satisfying the differential constraints of the vehicle. It reduces
computational time and has a good performance for non-holonomic vehicles.

This method guarantees optimality and smoothness of the solution once it does not
introduce discontinuities. Also, the path plan is very close to the real motion of the vehicles.
However, exhaustive sampling may lead to unnecessary computational complexity and

oscillations may be present due to problematic discretization in the heading angle.

2.3.3. Local search

Searching the entire graph in real-time is not always efficient, so a local search uses a
different approach trying to reduce the search space regarding distances and time. Probably
one of the most employed methods consists on lateral shifting a given geometric curve,
generally splines or clothoids. The results are then evaluated by a cost function taking into
account several parameters as distances, time and collision checking. This method may not

perform very well inside complex environments and the Figure 5 describes it better.
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Figure 5: Local search examples. Reprinted from (3).

2.4. Experimental issues: robot pulling a trailer

An application of the trajectory planning method is the experimental work performed
by a French research team from the Laboratoire d'Analyse et d'Architecture des Systemes -
CNRS (4). The trajectory planning was performed on a nonholonomic system, i.e. a system
whose state depends on the path taken in order to achieve it, represented by a mobile robot

pulling a trailer (see Figure 6). Car-like vehicles are examples of nonholonomic systems.

Figure 6: Robot and trailer used in experiments. Reprinted from (4)

The robot was a two driving-wheels mobile robot equipped with an odometer
capable of giving the position and the direction of the robot as well as an angular encoder that
gives the absolute direction of the trailer. The robot was attached to a trailer, so the system
was an articulated vehicle. It also had a computer environment composed of Unix
workstations and on-board processors.

The experimentation can be divided in three main steps: the path planning, the
trajectory planning and the control law.

The path planning method implemented here relied on a geometric and on a local

planner. The geometric planner computed a collision-free path using the Random Path

Page | 19



Planner algorithm (RPP), the random path planner presented in (5). It does not take into
account the kinematic constraints. This path is then approximated by a sequence of collision-
free and feasible paths computed by the local planner, without taking into account the
obstacles.

Once a path is defined, the computing of the velocities of each wheel along the
planned path gives the trajectory. The velocity and acceleration constraints must be taken into
account. The challenge at this level is to find the minimum-time trajectory. For instance, if the
shorter path is not regular enough, the robot will have to stop at some points, increasing
trajectory time.

Finally, to get the trajectory to the motion of the system, a simple control law was
chosen. When the robot goes forward, the trailer is ignored and the robot is stabilized using
this control law. But when the robot goes backward, it is necessary to define a virtual robot
which is symmetrical to the real robot with respect to the wheel axle of the trailer (see Figure

7). The same control law is then applied to the virtual robot.

robot

trailer

virtual robot

wheel axle
Figure 7: Virtual robot. Reprinted from (4).
The experiment results are showed below. In every scenario, the goal was reached
with accuracy of approximately 10 cm. The length of the paths is around 15 meters and the

average linear velocity is 0.5 m/s. It is foreseen that improving the control law can lead to a

better accuracy.
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Figure 8: Results of the experiment. Reprinted from (4).

3. PROJECT OVERVIEW AND DELIVERABLES

By analyzing the state of art, the timescale of the project and the available resources,
the three parts involved (the students, Siemens and the project advisor) decided the guidelines
of the project. In order to achieve the main objective, which is to develop a trajectory
planning method and to simulate it with Amesim, some decision were taken. In this section,
these decisions will be introduced in order to give an overview of the project.

Considering that the project aims to explore the trajectory planning of an articulated
vehicle, it is mandatory to define the kinematics modeling for this type of vehicle. A
theoretical modeling of an articulated vehicle, including the differential equations of its
movement, was defined and applied in the trajectory planning method.

A much more realistic model was created with Amesim. This model is an important
part of the project as it provides a reliable way to simulate how real articulated vehicles would
behave when following the planned trajectories. Both theoretical and Amesim models are
introduced in section 4.

The method here developed to plan trajectories follows the technique presented in
the state of art, section 2.1.

For this project, it is considered that the articulated vehicle must travel in a bi-
dimensional space with static obstacles. Since this project will consider static and pre-defined
environments, SLAM (Simultaneous Localization and Mapping) planning won’t be primarily
studied because it emphasizes mostly obstacle prediction and traffic environment modeling.

To plan a trajectory in such environment, the space is discretized and represented as
a state space. Each state is defined by the configuration of the vehicle (Cartesian coordinates

Page | 21



and orientation of the front and rear vehicle) and the motion primitives connecting it to
previous states (speed, steering angles and time). In other words, the state is tied to the
dynamic conditions that led the articulated vehicle to assume a specific configuration in that
particular moment. This approach is similar to the State Lattices from 2.2.3.

The path planning developed in the project was based on two algorithms. The main
path planning algorithm chosen was the RRT, briefly introduced in the state of art. The
algorithm is detailed and discussed in section 5, along with the reasons that guided to this
choice. A secondary path planning algorithm, called Dubins path, was used to complement
the RRT.

Python has been chosen as the main programming language once it grants flexibility
to code and experiment new features. Even though there are other languages with a better
computation power than Python, this criterion has not been a major priority.

A simplified maneuver search was incorporated into the path planning algorithm. As
a result, the algorithm is capable of providing the trajectory for articulated vehicles.

A use case was designed in which the trajectory planning algorithm is implemented.
The algorithm output is then simulated in the Amesim model. The goal is to validate if the
planned trajectory can be followed by a real articulated vehicle. The results from these use
cases are discussed in sections 7.5 and 8.3.

Therefore, the resulting deliverable of this project is the script that implements the

trajectory planning method.

4. KINEMATIC MODELING OF AN ARTICULATED VEHICLE

4.1. Theoretical model

The non-holonomic RRT algorithm requires the input of the articulated vehicle’s
kinematics equations since the modeling is a 4-dimensions problem and depends on the four
variables that describe the movement of this kind of vehicle.

Basically, the parameters are x(t),y(t),0(t) and a(t), where x(t) and y(t) are the
coordinates of the front vehicle’s rear axle, 6(t) represents the orientation of the front vehicle
and a(t) is the relative bend of the rear vehicle. In this project, a tractor-trailer model will be

considered, corresponding to a 4-wheel front tractor and a 2-wheel passive trailer, both linked
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by a revolute joint. The joint acts as a mechanical stop to the movement. The modeling can be

better understood seeing the Figure 9:

z/\@

Figure 9: A model for the tractor-trailer vehicle. Reprinted from (6).

)

Some assumptions are done in order to use the modeling. First, the bodies move in a
plane and the contact between each wheel and the ground is a pure rolling contact. Also, the
revolute joint connecting the two parts of the vehicle is located at the middle of the tractor’s
rear axle — which means that it is an on-axle model. These propositions imply that there are a
tractor’s maximal steering angle and a maximal bending angle.

So, if the geometry of the vehicle is correctly derived, the set of equations that
describe the articulated vehicle kinematic is (7):

x(t) = v(t)cosO(t)
y(t) = v(t)sinb(t)

o(t) = Q tang(t)

() = v(e) » [ e S”z(za)l
Where v(t) denotes the velocity of the tractor’s rear point, ¢ (t) the tractor’s steering
angle, L, the length between the tractor’s axles and L, the length between the trailer’s rear
axle and the hitch point.
These equations have a non-holonomic nature so it is not possible to integrate them.
Nevertheless, if we consider that v(t) and ¢(t) are constants in time, the system turns out to

be integrable.
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4.2. Amesim model

The theoretical model used in the non-holonomic trajectory planning algorithm is
only a simplified model of an articulated vehicle chassis. It means that an actual vehicle
would have a lot of different subsystems including tire, suspension, chassis, steering and
powertrain systems that need hundreds of different parameters to simulate the behavior of an
articulated vehicle as accurately as possible.

Furthermore, the trajectory planning algorithm uses simplified equations to simulate
a predicted displacement of the vehicle in the space. But once it is intended to apply the
solution to a real articulated vehicle, hardware turns out to be essential in order to convert the
trajectory planning outputs into inputs to the vehicle. Therefore, it could accelerate, brake and
steer towards trying to follow the planned path.

Hence, all these subsystems are modeled in Amesim. So a trustworthy simulation is
able to replace an entire real vehicle and its hardware. The model and how its components are
related are represented in the draft below. The subsystems are described in the next

subsections.

Figure 10: Complete Amesim physical model.
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4.3. Chassis, suspension and steering subsystems

The chassis is modeled by three blocks representing the axles of the vehicle. Two of
them do not steer (both rear axles), whereas the tractor’s front axle may steer and
consequently has the steering model connected to it. The axle block is responsible for
updating the states that describe the position of the wheels with respect to the chassis. It takes
into account suspension, steering, brakes and engine effects. In order to improve the model,
an elastokinematic subsystem could also be attached to it.

Both rear axles have a simple suspension using a spring-damper model. The steering
axle illustrated in Figure 11 contains more detailed description including an anti-roll bar to
avoid rolling effects and an oscillating axle — a more resilient suspension employed on heavy

transport.
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Figure 11: Chassis, suspension and steering subsystems.
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The steering is modeled by a pinion-rack connected to a rotary spring-damper which
receives the input of the steering wheel. Here, the steering angle is limited to 30 degrees.

The engine effect comes from the torque transmitted by a differential and the brake
effect comes from a simple friction torque generator. Both engine and braking inputs will be
further described.

After all the three axles are modeled, they are connected to a spherical joint. It is
noted here that a revolute joint is used in the theoretical model. This is explained by the fact
that the theoretical model considers only the x-y plane while Amesim does its calculations for

the 3D space.

4.3.1. Tire subsystem

The tire model is illustrated in the image below. It is composed of 5 main
components: road model, road grip model, tire model, tire belt model and tire kinematics
model.

The road model creates a contact between the tire and the road.

The road grip model represents the adherence between the tire and the road, so it
allows a simulation in many different soils (dry, wet, snowy, etc.) depending on the road grip
parameter inputted.

The tire model generates the contact force at the tire/soil interface. This is a pure
dynamic block and allows a longitudinal/lateral behavior analysis of the tire.

The tire belt model allows the computation of characteristic inputs of tire models
such as side slip angle, longitudinal slip, camber angle, vertical load of the tire and turn slip.

The tire kinematics model is used to compute all kinematic elements of center of tire
contact. It outputs variables such as absolute velocity of contact point and wheel rotary
velocity. The tire stiffness is inputted to this model and a simple spring-damper has been

used.
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Tire kinematics model
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Figure 12: Amesim tire model. Reprinted from Amesim manual.

4.3.2. Powertrain subsystem and brake control

The powertrain subsystem is responsible by the engine modeling as well as the
power transmission. In this project, the powertrain has a simple model. The throttle signal
comes from the driver subsystem and is converted into torque by a torque converter. Then, a
rotary load computes the inertia of the vehicle, outputting a rotary velocity. The torque goes
through a reducer, a rotary spring-dumper and finally comes to a central differential. The
central differential is connected to two other differentials corresponding to each axle of the
tractor.

Moreover, simple control takes charge of calculating the right throttle to be
transformed in torque. It takes into account the maximum power of the engine, 150 kW in this
example, and then is multiplied by a first order system which adds a lag to the response of the
throttle.

The brakes control is very similar to the throttle control. An input from the driver is
multiplied by gains and a first order system, also adding a lag to the response. The signal is
received by the friction torque generator. The friction torque is then applied between the
wheel and the spindle.
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Figure 13: Powertrain subsystem and brake control.

4.3.3. Driver subsystem

The driver subsystem used in this project is a built-in Amesim feature that works as a
path follower. It is composed by five main blocks that control longitudinal and lateral driver
based on inputs as coordinates of the path to be followed ((x, y) coordinates and radius of the
curve, with 0 meaning straight line) and target speed at each point of the path.

Given a trajectory in a .data file, the driver block produces steering wheel commands
-that will be further inputted in the steering subsystem - in order to follow the trajectory. Two
PIDs are responsible to correct the trajectory of the vehicle, one acting on the distance to the
reference trajectory and the other acting on the heading. Signal coming from sensors, such as
speed and lateral acceleration, feedbacks the controllers in order to minimize errors.

The longitudinal driver handles the accelerator (throttle) and brake pedals according
to the target speed orders. The orders feed the powertrain and brake subsystems.

Generally speaking, the driver subsystem is supposed to be the component
responsible for converting the trajectory planner outputs into braking, accelerating and
steering inputs. The simulation of all the subsystems described along with the trajectory

planning inputs is a good prediction of a real articulated vehicle behavior.
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Figure 14: Driver subsystem. Reprinted from Amesim manual.
5. CHOOSING THE RRT ALGORITHM

A deeper analysis on the trajectory planning methods mentioned on the state of the
art section leaded us to a single choice concerning the best method to implement on this case.
The RRT seems to be the most appropriate one for several reasons.

First of all, it is a method that has been extensively used in recent years for path
planning, including many cases of autonomous driving, which proves that it is a top research
field on this subject. Yet RRT is a probabilistically complete algorithm (8) and even if it does
not necessarily converge to an optimal solution, finding a solution for a complex high-
dimensional problem like this one is already satisfactory. RRT also guarantees kinematic
feasibility and handles general dynamical models. Finally, it can easily be implemented in
real-time, and even if this is not the scope of this project, this is an advantage as it allows
future work on the matter to implement real-time planning.

On the other side, RRT main drawbacks lie in the jerky paths it randomly creates, as
well as the need of a collision checking routine for every step when developing the random
tree. In a workspace with many obstacles it can result in computational complexity.

However, since the algorithm has already been extensively applied and studied, there
are many optimizations that were presented in the literature that allows overcoming the

algorithm drawbacks.
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Table 1: Evaluation of path planning methods. Reprinted from (9).

The Table 1 presented on (9) shows a comparison among many path planning
methods already employed, including the RPP (or "Two step™) used by Laumond on (4),
RRT, grid search, MPC and Lattice planners already mentioned in this report. In addition, this
paper proposes an alternative method called "Car track method" based on lattice states and
local search approaches.

Regardless of lack of information concerning RRT runtime and length of path in the
evaluation above, we can state that the algorithm is one of the most applied when planning
paths.

In this section, a more detailed explanation of the RRT method will be presented as
well as a comparison among the standard algorithm and its variations and improvements

possibilities.
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The RRT algorithm considers a system composed by a known obstacle region, an

obstacle-free space, a goal region and an initial state. It presents basically seven main

functions that are described below (10).

1)
2)

3)

4)

5)

6)

Sampling: This function randomly samples a state in the obstacle-free space.

Nearest: It returns the nearest node from a randomly sampled state according to a cost
function. Without differential constraints, the cost will be the Euclidian distance.

Steer: The Steer function returns a control input that drives the system from a state to
another, commonly from the randomly sampled state to its nearest node.

Collision Check: This function is not a part of the RRT, so a collision check method
must be chosen and incorporated in the algorithm in order to verify if the planned path
lies inside the collision-free space.

Near-by vertices: It returns the vertices that are near an input node, generally
according to an area or volume function.

Insert Node: It inserts the new node to the tree, creating a connection between the
node and its parent. It also assigns a cost to the new node.

The pseudo-code and the diagram presented below can explain better the method. In

the algorithm, G is the tree topological graph, C is the configuration space, X,qngom 1S @

configuration randomly sampled from C, x4 IS the vertex which is closest t0 X;-gngom IN

terms of distance, u is a selected input minimizing the distance between x,4n40ma@nd Xpnear

and x,,,,, is the new configuration.

RET(xp)

1 Initialise a tree (G) starting from point (x;)

2 Repeat

3 Sample a random configuration X.angem from the configuration space (C)
4 Flag xpeag the closest point of the initialised tree (G) t0 X andom

5 Select the input u which minimises the distance (X andom, XnEar )

6 After At and the application of u, flag the new configuration x,e.w

7 Add x,.., to G

3 Add the edge between xpew and Angar to G

9 Return G

Figure 15: RRT simplified algorithm. Reprinted from (3).
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Figure 16: RRT’s steps and random tree algorithm. Reprinted from (3).

Briefly, the RRT starts with an empty tree that is incrementally filled by sampling
random configurations. The samples are added to the tree choosing as its parent the nearest
state in the tree that can be reached with an input. A collision check is done in order to verify
if the tree contains a feasible path.

The next subsection will introduce an improvement to the RRT method which proves
that a rewiring function is capable to avoid high cost paths as a final solution — a negative

point of RRT algorithm.
51 RRT*

Regarding to effectiveness, RRT is a sample-based approach that usually relax
completeness requirements in order to achieve computational efficiency. Even though it is

probabilistically complete, it is proved that its probability of convergence to an optimal

solution is actually zero (11). It is explained by the fact that RRT always choose the nearest
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node as parent of the randomly sampled state. It means the algorithm does not analyze the tree
in terms of cost and perhaps the nearest node is not the best choice.

Hence, the algorithm has been improved and a new method has been come up with,
the RRT* (called “RRT-star”). This method is an alternative with asymptotic optimality
which means that it is almost-sure it will converge to an optimal solution. It makes RRT* an
advantageous solution to real-time applications, once it quickly finds a feasible motion plan
and also improves this plan toward the optimal solution during the execution time of the
current plan.

The biggest difference to the RRT method is that the RRT* considers all the nodes in
a defined neighborhood of the random sample and evaluates the cost of choosing each of the
node inside this neighborhood as parent of the random sample. It allows a rewiring phase that

usually reduces the cost of reaching the sampled nodes.

log(n))d,

The neighborhood space is generally defined as a circle of volume k = a( —

where a is a fixed number and d is the search space dimension.

Furthermore, extensions may improve the RRT* method. For instance, in online
applications, the Committed Trajectory (11) technique starts an iterative planning phase just
after the initial planning phase is completed. It considers a committed trajectory — a piece of
the initial planned path — and while riding it, the vehicle tries to optimize the remaining
portion of the trajectory. Thus, the path is optimized iteratively while the vehicle is executing

the previously planned path.

5.2. Closed-loop RRT

RRT has been previously employed to autonomous urban driving (12) (13). The
main difference in this case, comparing to driftless robots, is the complex and instable
dynamics of these vehicles.

To compensate this, RRT can be employed with a closed-loop stabilizing controller
(12). The algorithm grows a tree of feasible trajectories originating from the current vehicle
state that attempts to reach a specified goal set. It runs a forward simulation using a vehicle
model and the controller to compute the predicted state trajectory x(t). Given a reference
input r, the controller is used to give high rate commands u taking into account the vehicle

dynamics.
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Even though the controller is not the goal of this project, the possibility to use the
RRT with a closed loop was considered as an advantage.

Each time a difference is observed between the actual position and the predicted
position, the closed loop RRT must perform an online repropagation, respecting the
committed trajectory whose end coincides with the beginning of the new trajectory to be

calculated.

Input to controller
= Predicted path
meE Actual path
=== Fepropagation

Current
states

Best path

Goal

Start Obstacle

Figure 17: Repropagation. Reprinted from (12).

6. HOLONOMIC RRT*

At a first moment, the algorithm developed was a holonomic path planning (since
maneuvers and time were not considered in this first approach, as well as the kinematics
constraints of the vehicle), for reasons of learning the structure of a simpler RRT. Also, once
the RRT* is a variant of the RRT with some functions in addition, this method has been
primarily implemented for the holonomic planning. A further implementation that has taken
into accounts the kinematics constraints and degrees of freedom of an articulated vehicle and
will be explained in section 7.

The functions of the RRT* has successfully been developed such as Sampling,
Nearest Nodes, Node Insertion, Re-wiring and Collision Detection. The latter uses a Ray
Casting (14) method to identify if a node is inside a pre-determined obstacle. The method says
that a ray starting from a point and pointing to any direction will cross the borders of a

polygon an odd number of times if and only if the point is inside the polygon.
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In addition, a GUI helps the algorithm to be debugged and visualized in a more
intuitive way. At a first glance, it was decided to use the library PySide (a Python alternative
for the famous C++ QT library) to develop the graphical features. However, it seemed easier
and faster to use the library PyGame which meet greatly the expectations. Moreover, this
library has been used several times in other path/trajectory-planning projects.

Concerning the tree exploration, the script was supposed to use a kd-tree, a space-
partitioning data structure for organizing points in a k-dimensional space (15). Nevertheless, it
was found out that this structure does not allow updates and therefore requires a full complete
tree to make a search within. Thus, a structure using simple nodes containing information
related to cost (Euclidian Distance through the tree nodes from the start point) and parent
node has been used.

The holonomic RRT* algorithm showed some interesting results. The developed
example consists in linking a start point (upper left corner at Figure 18) and an end point
(lower right corner at Figure 18). For that, nodes are randomly created and inserted in the
nodes tree. If needed, the points are successfully “re-wired” as the algorithm imposes. The

graphical feature allows clearly a better understanding of the algorithm.

Figure 18: Propagation of the nodes tree (left) and exploration for finding the best final path (right).

These preliminary tests did not include obstacles and consequently were not very
conclusive. Therefore, the collision detection was developed and allowed a still better
comprehension of what happens when obstacles are added to the environment and what is the
expected behavior of the RRT* algorithm (Figure 19)
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Figure 19: Propagation of a RRT* algorithm in an environment with obstacles (green rectangles).

7. TRAJECTORY PLANNING ALGORITHM FOR NON-HOLONOMIC
ARTICULATED VEHICLES

After the holonomic RRT* implementation, the differential equations presented in
4.1 were integrated to the algorithm, transforming it into a non-holonomic planner. It means
that the displacement of the articulated vehicle is now bounded by its kinematics equations.
Besides that, the whole algorithm was widely modified in order to produce more robust
software. It is also important to note that the non-holonomic RRT* is much more complex
than the holonomic RRT* once the latter can connect two configurations without taking into
account the vehicle’s movement constraints. That is why it was decided to implement the
traditional RRT for non-holonomic trajectory planning.

The next subsections will present in detail the main functions and classes of the

algorithm, as well as the first results of this algorithm.
7.1. Nodes Tree
The RRT algorithm is based on a Tree composed by numerous Nodes. Each Node is

connected to another through an Edge. Considering that, a complete Tree data structure has

been developed.
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The Tree contains a Node Map represented by a Python dictionary. In this Node
Map, the array containing the articulated vehicle configuration (x,y, 6, @) is the key and the
Node structure itself represents the value. Thus, it is always possible to have access to a Node
if its coordinates are precisely known. The entire Tree is also accessible via the Node Map
keys. In addition, the Tree permits to add and remove an Edge.

The Edge structure keeps information concerning the path between two Nodes. In
this way, an Edge has variables informing its source and its destination, as well as the cost
between the two Nodes which is the distance the vehicle needs to travel to get from one Node
to another following the outputted path. The necessary inputs (velocity v and tractor’s
steering angle ¢) to get from the source to the destination and the intermediary points
between them - once the path is discretized in many points between two Nodes - are also
stored.

The Node Structure saves four main contents. First, it contains its configuration as
already described. It also knows which Node is its parent, i.e., the Node that comes right
before it in the Tree and is bonded to it by an Edge. The distance from the root of the Tree and
the Node is also stored. The distance of a Node is always the distance of its parent summed
with the cost of the Edge that connects both. Lastly, a Node knows all its adjacent Edges in

which it is a source.
7.2. Collision Detection

At a first moment, the project was supposed to use a built-in Python library to treat
the collision detection between the vehicle and the obstacles in the surrounding environment.
The Box2D (16) — an engine for simulating rigid bodies in 2D — has been considered for that
purpose. However, the library has been analyzed and it uses the Axis-Aligned Bounding Box
(AABB) (17) method to verify whether there is a collision or not. In this way, it was decided
to develop from scratch this collision detection method since it could let the code more fluid
and the project would be less dependent on 3 party libraries.

The AABB method consists on finding for each obstacle or vehicle the axis-aligned
minimum bounding box, i.e., the minimum bounding box rectangle in which the edges of the
box are parallel to the coordinate axis of the system. That way, the vehicle and the obstacles
are all represented by axis-aligned “rectangles”, which let the collision verification very easy

to be done.
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The Figure 20 allows a clear understanding of how the method works. As it can be
seen, the AABB method indicates a collision even in situations where the two compared

bodies do not collide but only their bounding boxes.
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Figure 20: Axis-aligned bounding box. Reprinted from (18).

Theoretically, it could be a problem as the method indicates a “fake collision” even
before the actual collision occurs. However, if the problem is considered in real life and not
only in simulation, the margin taken into account is actually desirable for two reasons. First, it
is not very safe to have the vehicle riding very close to obstacles, so a better path planning
solution would not even generate possible paths alongside obstacle. Also, the accuracy of the
controller that will drive the trajectory in practice is not known. It means that when inputting
the planned trajectory into an articulated vehicle controller, the vehicle would not follow
exactly the path. This situation is clearer when comparing the path driven by the Amesim
controller and the path planner output. Therefore, a margin space between the vehicle and the
obstacles turns out to be necessary.

Concerning the collision detection calculations, it is easily implemented. The
obstacles are static bodies, so their bounding boxes are calculated at the beginning of the
algorithm and do not change. The articulated vehicle is a dynamic body which means that its
configuration changes with time. Therefore, at each time step the bounding box of the vehicle
is recalculated. The dimension of the vehicle being constant, the algorithm takes the vehicle’s
configuration and applies geometric equations in order to find the corners of both tractor and
trailer. Once the corners of the two parts of the vehicle (tractor and trailer) are known, the
vehicle bounding box is delimited by the maximum and the minimum x and y coordinates

amongst all the corners.
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Having all the bounding boxes of the environment calculated and aligned, the
algorithm does n comparisons between the existent bounding boxes where n is the number of
obstacles in the environment. The collision detection is made by verifying the veracity of the

following set of inequations:

xminvehicle > xmaxobstacle
yminvehicle > ymaxobstacle
xmaxvehicle < xminobstacle

ymaxvehicle < yminobstacle

Where Xpmin/max @Nd Ymin/max are the minimum/maximum coordinate values of a

bounding box, considering all of its corners.

7.3. Trajectory Planner

The trajectory planner follows a traditional non-holonomic RRT implementation.
First of all, the Nodes Tree is initialized and the pre-defined start configuration is set as root
of the Tree. The algorithm aims to find a trajectory that connects this start configuration to an
end configuration. For that, an N number of Nodes are randomly placed on the environment.

For each Node, some steps are taken:

7.3.1. Random Configuration

A random configuration q,qnaom = (x,y,6,a) is created following some
boundaries:

(xmin' ymin) < (X, y) < (xmaxr ymax)

—nt<0<m

3543

Where the (x, y) boundaries are related to the pre-defined map and the a boundaries
are related to the maximum hitch angle an articulated vehicle may have. In this project, it is
limited to 60°. As it can be seen, 8 has no boundary limits.

In theory, this random configuration should be connected directly to the Tree as it is

done in the holonomic RRT*. However, the non-holonomic case imposes some kinematic
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constraints once the vehicle displacement follows some defined equations. This way, it would
be very costly to find a trajectory starting from an existing Node Tree and finishing in the
exact random configuration — obviously respecting the movement constraints. Actually, it
consists on the problem this project is trying to find a solution. But to face that in a smarter

way, the next step is taken.
7.3.2. Nearest Node

So once the g,qnqom IS Created, the algorithm verifies whether it lies on an obstacle.
If it is true, the configuration is rejected and another one is created. If it is not, the code
continues and tries to find the Nearest Node qpeqres: OF the random configuration among the
Nodes already contained in the Tree. Then, these two configurations, qyearest aNd Grandaom
should be connected. Instead, the algorithm apply some inputs (velocity v and tractor’s
steering angle @) t0 gnearest: Verifying where the resulting configurations lay down on the
environment — called qye.ws- The new configuration gy, Will not be the random
configuration but that one among the qy.ws that is spatially closer t0 q,qndom. i-€., the

configuration that minimizes the distance t0 q,qndom-
7.3.3. Steering

In order to find gy..s, @ Steering function is called. It is responsible for applying the
inputs to an existent configuration, calculating the articulated vehicle movement equations
and so generating a new configuration. The inputs are pre-defined on the algorithm and it has
been considered that the vehicle will ride in low velocities and turn under low angles. The set

of inputs used is:

v e {1.0} (?)
A A mw T
QE {_ﬁ'_ﬁ'o'ﬁ'ﬁ} (rad)
This way, five different input combinations are used considering the product between
v and ¢.
Between two configurations, the inputs are applied n times, where n € N* and is

always defined in relation to the maximum value of ¢, in such a way that applying the
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maximum steering angle input n times, the vehicle will vary its heading in approximately

0= +~ rad . The equation used to find n is:
6 Y +2
ES = X — = —_
n n I ang = | > |

Where L; is the distance between the axles of the trailer.

Applying the inputs n times is useful to discretize the path between two
configurations. It means that there will be n intermediate points that indicate more precisely
the trajectory between the configurations. When plotting the path, it also provides a better

visualization.
7.3.4. Node Insertion

Following with the algorithm, qy.,, is selected among all the qy..s generated and
then the collision condition is verified by updating the vehicle bounding box according to the
new configuration. The (x,y) coordinates are also analyzed in order to guarantee that gy,
lies on the defined map. A last test is also done to guarantee that the Tree does not contain
qnew, €VEN though it is an improbable situation. The three conditions guaranteed, a new Node
is created and qy.,, IS assimilated to it. A new Edge is created between quearest aNd Guew, itS
cost is defined as the traveled distance between the two configurations (if ¢ is equal to O, the
cost is the Euclidian distance between the Nodes), and the intermediate points are stored in
the Edge as well as the input set applied. Finally, having the queqres: distance from the root
and the cost of the Edge, it is possible to find and set the gy,,,’s distance from the root as
illustrates the equation below:

distance(qyew) = distance(qnearest) + cost(Edgeq,,..—anoarest)

7.4. Dubins path planning

As discussed in 5, the RRT algorithm randomly creates nodes in order to build a
space tree. When planning a trajectory connecting two points it is extremely unlikely for a
node corresponding to the final configuration to be randomly generated. Therefore, a method

to take the vehicle from a node in the RRT tree to its exact final position is required.
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The Dubins path planning is a simple but effective solution to this issue. This
solution was first reported by Lester Eli Dubins (19) in 1957, and a description of its
equations is presented in (8).

However, the Dubins path method is only applied for the front vehicle, whose
position and orientation can be defined. As in the RRT trajectory planning, the orientation of
the rear vehicle can be calculated but cannot be controlled as it is only a consequence of the

front vehicle’s movement.

7.4.1. Dubins car

The Dubins version of a simple car assumes that the vehicle has a constraint on the
curvature of the path and that it can only travel forward. If the vehicle can also travel in
reverse, then the path follows the Reeds—Shepp curve (8). Since this project deals with
articulated vehicles, we will not consider the reverse gear.

The kinematics equations of the Dubins car are the tractor’s equations of an

articulated vehicle. These equations were already presented in 4.1.

7.4.2. Dubins path segments

Dubins showed that the shortest path for the Dubins car can always be expressed as a
combination of no more than three path segments. This combination can be a sequence CCC
or CSC, where C is an arc of a circle of radius p and S is a straight line segment. Each arc C
can represent either a curve to the left (L) or a curve to the right (R). Therefore, there are six
admissible Dubins paths: LSL, RSR, RSL, LSR, RLR and LRL.

Note that the radius p of the C segments depends on the tractor’s steering angle ¢ and

on the length between the axles of the car/tractor L, .

p = Li/tan(o)
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(a) (b) (c)

Figure 21: Example of the three Dubins path: (a) RSL, (b) RSR, (c) LRL. Reprinted from (20)
7.4.3. Dubins path planning algorithm

The algorithm developed for this project was based on the algebraic solution
published in (21) and inspired in the C library from (22).The goal is to connect an initial
configuration g; to a final configuration g of the Dubins car, each one defined by the
coordinates (x,y) and the orientation 8 of the front vehicle. Note that the relative bend of the
rear vehicle o(t) is not taken into account, so a configuration for the Dubins algorithm is
different from the configuration considered so far.

q=(xy0)

The solution described in (21) consists of a set of equations for each admissible
Dubins path. These equations are used to obtain the lengths t, p and g of each constituent
segment of the Dubins path. For instance, if the Dubins path is a RSL curve, t is the length of
the R segment, p is the length of the S segment and q is the length of the L segment.

However, this solutions was designed considering a normalized state (Figure 22)
where the initial and final configuration are ¢;**"™ = (0,0, ) and qz°"™ = (0,d, ) and the
circle radius is equal to one. In order to apply the equations, we must first translate g; and gy
to this normalized configuration. At the end, the lengths ¢, p and g calculated for this
particular state must be multiplied by the radius p to give the lengths of each segment in the
original configuration.

The algorithm calculates t, p and g for every one of the six admissible Dubins path.
The path with the shortest total length is elected the optimal Dubins path for the

configuration.
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Figure 22: Normalized configuration for the Dubins path equations. Adapted from (21).

With the best Dubins path and its lengths, it is possible to apply the kinematics
equations from 4.1 to define the wvehicle’s states during the Dubins path, i.e.,
x(1),y(t),06(t) and a(t). The information is used to complete the RRT tree and connect the
RRT trajectory with the final destination.

7.5. First results

Having the algorithm finished, some tests were done in order to prove the proper
functioning of what has been developed. A first example considers a 400m x 400m map
where the initial configuration of the articulated vehicle is (50m,50m, 0°,0°) and its final
one is (350m,350m, 0°,0°). There are three known obstacles that the vehicle must avoid.
The obtained result is showed in Figure 23:

As it can be seen, the planner really avoids the obstacles with a margin in order to
prevent any collision either in simulation or in a possible real-life implementation. The red
line indicates the first traced path and the yellow line represents the Dubins path, generated to
approximate the vehicle to its final configuration. The vehicle stops at
(349.999m, 349.999m, 0.262°, a), where alpha is an arbitrary angle once the Dubins path

does not control the trailer’s orientation.
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Figure 23: First example planned trajectory.

As a first experiment, it can be concluded that the algorithm presents a very good
behavior. The trajectory is continuous and does not contain any cusps or singularities. Also,
the output has enough straight lines, meaning that among the entire built Tree, the algorithm
has chosen the less costly and curly path. Moreover, the output is not as jerky as the state of
the art proposed, even if there are some curves in a row that could affect the lateral behavior
of the vehicle.

The outputted Nodes has been inserted into Amesim in order to verify how is the
behavior of the vehicle being driven by the Amesim built-in controller, whose inputs come
from the developed algorithm. Figure 24 shows the driven trajectory between the points with
coordinates (120m, 50m) and (320m, 250m).
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Figure 24: First example generated trajectory from Amesim.

It can be concluded that the controller cannot precisely handle the ride though the
proposed path is followed. When performing a curve, the controller takes a long time to react
to heading perturbations, and a kind of overshooting seems to let the response to another entry
a little slow. The overshooting causes a curve that was supposed to have a heading change of
90° degrees to have a higher change.

Moreover, the two sequences of three curves in a row proposed by the planner should
have similar behaviours when followed by the controller. However, the second sequence is a
bit more flattened, probably because the errors during the ride are accumulated.

This example evidences the importance of having a correctly tuned controller when
trying to reproduce a planned trajectory in real-life (or in simulation at least). As the Amesim
controller have two PIDs — in fact, the PID that controls the distance to the reference
trajectory has the derivative gain set to 0 and the PID that controls the direction discrepancy
has only the proportional gain — if all the gains are not very well tuned, the driven trajectory is
expected to be like the results seen in Figure 24. For instance, a derivative gain could make
the system react faster and the integral gain could reduce the interference of accumulative

errors during time.

Page | 46



8. PROPOSED IMPROVEMENTS

As the first results can exhibit, few point improvements might have been assembled

to the proposed solution. It is important to state that there will always be several possible

optimizations, once the RRT is constantly researched and many improvements have already

been considered. However, four improvements have been considered in this project:

1)

2)

3)

4)

The a angle is proposed to tend to 0. A trajectory planning is supposed to control
the four components of the articulated vehicle. Though, in practice, great part of
useful applications would require both tractor and trailer aligned (a = 0°).
Besides that, the precise control of the trailer’s heading along with the tractor’s
heading would need the backwards motion to be controlled. The reverse control
of an articulated vehicle seems to be a very complex task due to the system
instability and additional constraints such as the jackknife avoidance (23), where
the hitch point angle increases and the tractor and the trailer fold together.

The fewer curves the planner proposes the better in order to have a more realistic
trajectory and to prevent error accumulation in Amesim. Therefore, it is proposed
a 3-curves optimization in which the planned path is revisited and a sequence of
three curves in a row (if it exists) is tried to be reduced to only one curve. For
that, the Dubins path algorithm is recalled.

The Amesim controller containing the two PIDs may be better tuned in order to
have a more flat, realistic and trustworthy response.

A Dijikstra algorithm to find the shortest paths between nodes in a graph is

developed for future implementations.

In this project the first three improvements here proposed were developed and used

in order to optimize the first algorithm developed and presented in section 7. The results of

these improvements will also be presented and discussed. Then, Djikstra’s algorithm will be

introduced for future works.

8.1. Reaching a=0
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Analyzing the formula of the derivative of a when the steering angle is zero (¢ (t) =
0,Vvt) and the velocity is a positive constant, it can be understood the behavior of the trailer
when riding a straight line:

QO = v(E) » tanL([i(t) _ sinch(t) _ —%j(t)

It is a first order non-linear ordinary differential equation of kind y’ + k * siny = 0,

where k is Li With help of a mathematical solver (24), its solution can be found and
2

corresponds to:
a(t) = 2 cot™L(ecrtkt)

The inverse of the cotangent function tends to zero when the time tends to infinity.
Therefore it proves that more the articulated vehicle rides forward in a straight line more «
approximates zero, the proposed configuration.

This way, the developed optimization proposes to the algorithm to plan, if possible, a
trajectory where the end configuration is 20 meters distant from the actual goal and the tractor
is aligned with the desired orientation. After that, the vehicle only needs to drive forward 20
meters and whatever is the value of «, it will tends to zero. The straight line distance is
variable, meaning it could be a shorter path in case the map does not have a free 20 meters

space around the final configuration.
8.2. Curves optimization

The curves optimization works after the planner has already found the complete
trajectory between the start and the end configurations. Then, the optimization step analyzes
every four subsequent Nodes contained in the final path. If it finds three curves in a row
(generally, RLR or LRL, using the notation presented 7.4.2), the algorithm tries to connect the
first Node with the last Node using the Dubins path algorithm. This way, if the steering angle
proposed to the Dubins planner is the correct one, the originated Dubins path will contain
either two short curves and a long straight line or a single long curve, a short straight line and
a short curve (if a CSC is the minimum cost path calculated by the Dubins planner).

As it is difficult to estimate the best steering angle for an arbitrary set of curves, eight
Dubins paths are generated each one under a different steering angle. The steering angles are
between 0.2 * (R; + R, + R3) and 2 * (R, + R, + R3), where Ry, R,, R; denote the radius of

each curve. In fact, this is a good approximation. For example, if we consider three curves
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with the same radius R, they could be replaced by a single curve of radius 3R approximately,
which lays inside the boundaries of the tested steering angles. The Figure 25 illustrates better

the given example:

3R

3R

Figure 25: Three opposite curves being replaced by a single one.

The lengths of the generated paths are then compared and the shortest path is
selected as optimal. If this path is shorter than the original 3-curves length, the three curves
are replaced in the Tree by the Dubins path output.

This optimization shows that even after having the final path, many optimizations
might be done by reconnecting Nodes in different ways. A complete optimization would not
only consider three subsequent curves, but would compare each Node of the path with the rest
of the entire path, trying to find the lowest cost. This project has not considered a large scope
of optimization algorithms, but this one can show that there are plenty possibilities to find a

better trajectory.

8.3. Results with proposed improvements

When applying the optimizations described in 8.1 and 8.2, clear changes may be seen
in the trajectory planned. The figure below describes a simulation whose results are similar to
that presented in section 7.5 but with the optimizations applied. The final goal continues being
[350.0m, 350.0m, 0.°, 0.°], the simulation time was 60.446s and the optimization time,
1.636s.
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Figure 26: Optimized planned trajectory.

The yellow line keeps representing the Dubins path, but it also represents the final
straight line that makes « tends to zero. The first planned trajectory is still represented in red,
but the optimization traces a new purple trajectory over it. Near the middle of the figure, a set
of three curves is replaced by a new Dubins path, which generates two short curves and one
long straight line just as explained in 8.2. This time, the vehicle reaches the final position at
(349.985 m, 350.024 m, 0.°,—0.026°). The precision is mainly improved when analyzing
the orientation of the vehicle. Now, the a angle has a precision in the order of hundredth
degrees.

It can be verified that the trajectory is very close to one of the obstacles. It may be a
problem when simulating in Amesim, but conclusions may be taken only after simulation.

For that purpose, the generated path is converted in (x,y,radius) points that are

inputted in Amesim. The simulation runs through 600 seconds and the variables are printed
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each 0.05 second, even though the integrator is set with a variable step. The obtained
trajectory is showed in Figure 27:

— Y position [null] Path from Position Sensor
[null]
0 —
-100 —
t =574.308

-200 X1 = 350.000¢

J y 1=-350.107
-300

'400 1 1 T I 1 1 1 1 | 1 1 1 1 | T T T T | T T T T I

150 200 250 300 350
X: output from first order lag [null]

Figure 27: Optimized trajectory generated in Amesim.

As it can be easily verified, the results are way better than the first results obtained.
The number of curves — and mainly subsequent curves — is reduced, so the vehicle behaves in
a more realistic way once the controller has time enough to control the errors in relation to the
reference trajectory.

Also, analyzing the final point at 574.308 seconds, the vehicle stops at the Cartesian
position of (350.0009 m,350.1074 m). It means the controller can precisely handle the task
of reaching its goal. Indeed, the position error is in the order of only 10 centimeters.

Moreover, the orientation of the tractor (6 = 6,) and the trailer (6,) can be observed
as well as the a angle representing the relative bend of the trailer. Figure 28 below shows not
only these three angles, but also its derivatives, i.e, the rotary velocity correspondent to each

angle:
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Figure 28: Euler angles and rotary velocities of the tractor and the trailer vehicles

The final orientation of the tractor values 6, = —2.74836°, the final orientation of
the trailer values 6, = 0.400917° and the difference between them is a = —3.14928°.
Therefore, comparing these values with the expected results (6,,8,,a) = (0.°,0.°,0.°), it
can be concluded that the controller can also reach the angle goals with a good precision. The
total error is approximately in the order of 4 degrees.

Concerning the rotary velocities, it may be observed that the orientation angle
variations (8) do not exceed 10 degrees/s and the hitch angle variation (c) does not exceed 5
degrees/s. Therefore, the rotary velocities keep inside a good safety margin and do not attain
huge values that could compromise the hitch between the tractor and the trailer.

A last analysis consists of verifying if the vehicle collides with the obstacles or not
since the planner generated a path in which the vehicle gets very close to one of them. For
that, Figure 29 shows the path of all the corners of the vehicle as well as its center of gravity.

A zoom in the critical part of the path is done in order to let it easier to analyze.
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Figure 29: Completed description of the driven path by the center of gravity of the vehicle as well as all of its
corners. (CoG: center of gravity, FR: tractor’s front right corner, FL: tractor’s front left corner, RR: tractor’s rear

right corner, RL: tractor’s rear left corner, Trailer R: trailer’s rear right corner, Trailer L: trailer’s rear left corner)

The boundaries of the nearest obstacle are
[(250,250),(250,300), (300,300), (300, 250)], therefore there’s no collision. Indeed, it
can be seen that the closet point to the obstacle is (274.6088 m,302.2755 m) in which the

left side of the tractor drives a little bit more than 2 meters distant of the obstacle. Perhaps, if

Page | 53



the generated trajectory was curlier, the Amesim controller would not have been able to avoid
the obstacle and a collision would have happened. It highlights the importance of safety when
planning a vehicle trajectory and shows that the planner should be very careful when avoiding

obstacles, as well as the vehicle controller that needs to be prudent and precise.

8.4. PIDs parameters optimization

Even though the Amesim controller contains two PID controllers whose outputs are
summed in order to control the steering angle, this optimization tries to tune better only one of
them, the PID that controls the distance to the reference trajectory. Until now, this PID was

actually a PI, where k,, = 50 and k; = 0. 1, the derivative gain was set to zero.

Some tuning techniques could be used to find the PID gains such as the Ziegler-
Nichols method. However, as already mentioned, the built-in Amesim function does not
contain two pure PIDs solely, but it is actually a block that tries to make several corrections.
This way, a fine tuning would consider the whole block and not only one PID. Thus, a manual
tuning was decided to be done, inputting different gain values, simulating them and
comparing their results.

The next image illustrates one of the comparative simulations done. The original PI
has been compared to a pure PD and two other PIDs in order to try to identify the influence of

each gain in the controller behavior.

[null] t  =573.005
o7 x_1 = 348.728

y_1 =-350.184 —[50, 0.1, 0.] —

- x 2 =350 — [50., 0.1, 5.]
T y.2 = -350.041 [50.,0,20] |
— [50, 0.5, 10.]

7 X 4 = 350.7595
| y 4 = -351.256

-400 ————T7 T T T T [ T T T T [ T T T T T T T T T [ T T T T
100 150 200 250 300 350 400
X: output from first order lag [null]

Figure 30: Comparison among the simulated PIDs
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The pure PD (k, = 50,k; = 0,k; = 20.) and one of the PID’s (k, = 50,k; =
0.5,k; = 10.) presented an additional error in relation to the reference trajectory, even if
they seemed to have a less intense overshooting. The final point where x = 350 m is further
from the goal if compared with the original PI.

The other PID (k, =50,k; =0.5,k; = 5.) has a behavior very similar to the
original PI. Indeed, their differences consist only on the added derivative gain. The generated
paths present almost the same behavior. But when comparing the final point, the PID manages
to get closer to the goal. As the figure shows, its final point is (350 m, 350.041 m), closer
than the final goal of the PI, (350.0009 m,350.1074 m). The final angles of the PID
maintained almost unchanged if compared to those of the PI. Even if the difference is
minimal, this comparison shows that even the controller can be improved in order to

guarantee a trustier driven path.

8.5. Djikstra’s algorithm

The trajectory planning problem often includes map discretization. It means that the
environment is discretized once and then its configuration is stored. Whenever a new
trajectory planning is needed, the discretization is not necessary anymore because the map is
stored. It allows choosing a different start point at each simulation and does not impose a
fixed one. Moreover, the map could present circularities, so a Node would not have only one
parent as the developed algorithm requires. At this point, the Djikstra’s algorithm is
fundamental in order to find the best solution. When a Tree allows multiple parents, it faces
the “shortest path” problem and the Djikstra’s algorithm may solve it. For the moment, the
developed Djikstra’s algorithm is not implemented because the project has restricted its
application to cases in which the start and the end points are known as well as the surrounding
environment but could certainly be used in a future work.

This algorithm is commonly used for finding the shortest paths between nodes in a
graph. Normally, the algorithm has a computational cost equal to n? (25), where n
corresponds to the number of nodes. However when the algorithm is implemented in parallel
with a priority queue (26), the computational cost is considerably reduced which makes this
kind of search a very powerful method to use in a trajectory planning problem.

In this project, a Djikstra’s algorithm has been developed along with a binary “min

heap”, which turns out to be a priority queue method. A min heap is a tree-based data
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structure that satisfies the following property: if P is a parent node of node C, then the value
of node P is less than or equal to the value of the node C (27). So the lowest value is always
the root’s value. A heap is generally constructed using a single array alone. The first element
contains the root, the next two elements contain its children, the next four elements contain
their children and so on. So, the children of a node at position k will be at position 2k + 1
and 2k + 2.

The Djikstra’s algorithm has a quite simple logic. A node is defined as the source
and the algorithm will find the shortest path to all the other nodes of the tree. For this, the
algorithm initially assigns the distance between the source and all other nodes as infinity.
Then, it iteratively visits the nodes, calculates a tentative distance to them and assigns this

distance to the node if the distance is smaller than its current one.

9. CONCLUSION

The intention of this project has always been to work with cutting-edge technologies
and recent subjects that are currently being studied. The Advanced Driver-Assistance Systems
are surely technologies that will be responsible to cause several changes in the future world
and modify the way the society interacts with its environment. Thanks to the industry,
represented here by Siemens, the project could receive insights and the context of the project
was structured better, leading the students to work with a real problem faced by many
companies and researchers: the trajectory planning for articulated vehicles.

The three committed parts— students, industry and university — decided to study the
existent techniques of trajectory planning and develop a tool able to generate feasible
trajectories for an articulated vehicle given a known environment. After an extensive analysis
of the state of the art, it was decided that the Rapidly-exploring Random Tree (RRT) would be
the guideline method in order to develop the planner. Due to its relevance in the trajectory
planning world, probabilistic completeness, kinematics feasibility and several optimizations
methods, the method was implemented and confirmed its capacity of providing solid results.

Moreover, once the project involves articulated vehicles, a kinematics study of this
kind of vehicle was necessary. Describing its movement correctly and identifying the
kinematics constraints is a main role to guarantee a feasible solution. The vehicle modeling
also permitted the understanding of different degrees of details when doing a simulation. For
instance, the Amesim software proved that a much more complete modeling could be done,
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allowing the analysis of several different variables as well as the understanding in a
trustworthy way what would be the behavior of a real vehicle if it tried to ride the generated
trajectory.

The kinematics modeling and the planner algorithm were assembled in order to
generate a final solution. The results were very satisfactory and the presented use case could
prove it. The planner was able to generate a feasible, realistic and accurate trajectory, with a
precision in the order of hundredth of centimeters and degrees. The final results in the
Amesim simulation obtained an accuracy of 10cm in relation to the Cartesian coordinates and
less than 4 degrees in relation to the orientation angles of the vehicles, proving that it is very
important to have a trusty hardware. Both Amesim and algorithm simulations managed to
avoid collision with environment obstacles.

Also, the algorithm could be also optimized which is a great achievement once the
optimization is a very important part in any software development. Three main improvements
were implemented and used in this project. It included tending the o angle to zero,
reconnecting curves of the generated trajectory and tuning the PID contained on the Amesim
controller responsible for following the path outputted by the planner.

Therefore, it can be concluded that the project have done a great part of what it has
proposed at the beginning of its timeline. Doubtlessly, it still leaves space for future works in
which more optimizations could be done such as path reconnections and smoothing, modeling
of the reverse movement of an articulated vehicle and Amesim controller improvements in
order to find the best PID parameters that rides a more realistic path. A hardware
implementation could be aimed in order to compare the Amesim simulation with real-life test.
Finally, the developed solution could be used in order to study a real use case where the

generation of trajectories for articulated vehicle is very important.
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