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 “Dans la vie, rien n'est à craindre, tout est à comprendre.” 
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ABSTRACT 

 

The transport industry is passing through a revolution driven by the Advanced Driver 

Assistance Systems. They are designed for helping the driving, with benefits in terms of 

security, comfort, time, money and energy. These technologies are a growing market, and 

they are being improved towards autonomous vehicles. 

However, the advance of Advanced Driver Assistance Systems is a challenge that 

requires the development of new technologies. Among them, the trajectory planning is one of 

the most relevant. The problem becomes more complex when it involves articulated vehicles, 

like trucks and buses, since the kinematics conditions differs from a regular vehicle. 

This Project was conceived with the goal of design a solution for the trajectory 

planning of articulated vehicles. To do so, a tool was developed based on an algorithm called 

Rapidly-exploring random tree. The problem was also modeled using a simulation software in 

order to test the viability of the trajectories created by the tool. 

Besides the details regarding the development of this tool, this document will also 

present the results of this project. The tool was capable of generating trajectories with success 

and the simulation proved them to be feasible. 

 

Keywords: Articulated vehicles, trajectory planning, Rapidly-exploring random tree. 

 

  



 

 

 

 

 

RESUMO 

 

O setor de transportes passa atualmente por uma revolução impulsionada pelos 

Sistemas Avançados de Assistência ao Motorista (Advanced Driver Assistance Systems, em 

inglês). Eles são desenhados para colaborar na tarefa de condução, apresentando benefícios 

em termos de segurança, conforto, tempo, dinheiro e energia. Tais tecnologias estão em 

ascensão, sendo aprimoradas progressivamente rumo aos veículos autônomos. 

No entanto, o avanço de Sistemas Avançados de Assistência ao Motorista é um 

desafio que requer novos desenvolvimentos em tecnologias. Dentre elas, o planejamento de 

trajetórias é um dos mais relevantes. O problema se torna mais complexo quando envolve 

veículos articulados, como caminhões e ônibus, pois as condições cinemáticas diferem de um 

veículo comum. 

Este projeto foi concebido com o objetivo de desenvolver uma solução para o 

planejamento de trajetórias para veículos articulados. Para isso, uma ferramenta foi 

desenvolvida com base em um algoritmo de planejamento chamado Rapidly-exploring 

random tree. O problema também foi modelado através de um software de simulação para 

testar a viabilidade das trajetórias criadas pela ferramenta. 

Além dos detalhes por trás do desenvolvimento desta ferramenta, este documento 

apresentará também os resultados deste projeto. A ferramenta proposta foi capaz de gerar 

trajetórias com sucesso, e tais trajetórias se mostraram viáveis através da simulação. 

 

Palavras-chave: Veículos articulados, planejamento de trajetória, Rapidly-exploring 

random tree. 
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1. INTRODUCTION 

 

1.1. Advanced Driver Assistance Systems 

 

Advanced Driver Assistance Systems (ADAS) are intelligent systems developed to 

automate, adapt and enhance vehicles systems for safety and better driving, helping the driver 

during the driving process. Safety features are able to alert the driver to potential problems, 

avoid collisions and even take control of the vehicle, whereas adaptive features might provide 

adaptive cruise control, automate lighting and braking, keep the driver in the correct lane, 

among other features. 

These technologies are often split into six different categories concerning the level of 

automation. Level 0 represents no automation at all while level 5 corresponds to full 

automation. Today’s level is between 1 and 2 since there are examples of vehicles on the 

market such as Tesla Model S and Mercedes-Benz S65 AMG which allow the driver to keep 

his hands temporarily off the steering wheel, even though road and traffic must be constantly 

monitored. The figure below describes better all ADAS automation levels. 

 

 

Figure 1: ADAS automation levels. Reprinted from (1). 

 

With ADAS progressively improving towards fully autonomous vehicles, many 

applications can be found on the field of trajectory planning. In the future, cooperative 

trajectory planning may be responsible for the entire control of the traffic within big cities, 

automating intersection crossings for instance. Moreover, applications in industry are vast, 
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mainly in areas where the automation represents reducing costs and enhancing productivity 

such as the agricultural industry.  

The trajectory planning becomes an even more challenging subject when applied to 

articulated vehicles. The reason is that the presence of a spherical joint increases the number 

of variables needed to describe the system. 

 

1.2. Objectives 

 

In this context, this project aims to work with ADAS within the heart of the 

automobile’s academia and industry, researching deeper the problem of trajectory planning 

for articulated vehicles in diverse contexts. 

The objective is to develop a trajectory planning method to be applied on articulated 

vehicles. Additionally, the project also plans to model physically this kind of vehicle and 

simulate the trajectories generated. This way, the planned trajectory as well as the method 

itself, can be tested and validated. 

 

1.3. Engaged parts and motivations 

 

In order to achieve the objectives traced and presented above, three parts committed 

to work together: the students and authors of the project; the academic project advisor; and a 

private company. 

The project was developed by Miguel Agostinho Pereira Neto and Milter Shiniti 

Pesce, both current mechatronics engineering students at Escola Politécnica da Universidade 

de São Paulo (EPUSP) and double-graduated in general engineering at École Centrale de 

Lyon, France. 

Miguel has been part of the Advanced Driver Assistance Systems team of Siemens 

Industry Software for 6 months during his internship at Lyon, where he could be in touch with 

ADAS and autonomous vehicles, the subject of this final-year project. Milter has work for 6 

months as a software developer intern at Gemalto, a digital security multinational, in the 

region of Paris in France. 

Working within the engineering industry field abroad gave both students the 

opportunity to see the real context of creating and developing cutting-edge technology, which 

unfortunately is rare in Brazil. For two mere engineering students, the possibility to achieve 
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big goals and be part of researches that could lead to great changes in the human society even 

during the university is an unparalleled opportunity. 

ADAS and autonomous vehicles are subjects that fit perfectly into the high-level 

research topics and are intensively growing in industry. This truly motivated the students to 

develop and study trajectory planning methods and simulations. 

The academic project advisor is Thiago de Castro Martins, professor in the 

Department of Mechatronics and Mechanical Systems Engineering of EPUSP. He has B.S. 

degree in mechanical engineering and a Ph.D. degree, both from EPUSP. He has already had 

experience with the matter as he has worked with trajectory planning at the Centre National 

de la Recherche Scientifique (CNRS), in France. 

The third part of the project is the company Siemens, here represented by the 

engineer Pierric Toulemont. Largest engineering company in Europe, Siemens works closely 

to many car makers and OEMs (Original Equipment Manufacturer). Through the feedbacks 

and demands that both development and engineering service teams received from its clients, 

Siemens became aware that the market is looking for trajectory planning technologies. The 

company already received demands from many sectors including agricultural industry, trucks 

automation, port maintenance and even valet parking for cars. 

One of Siemens’ many divisions is focused on the development of Industry 

Softwares. The office based in Lyon (France) has about 150 people developing, providing 

engineering support for and promoting the 1D Multiphysics Siemens’ simulation software, 

called LMS Imagine.Lab Amesim. 

Amesim is a system simulation platform which allows characterizing static and 

dynamic behavior of a component or a system. The physical modeling is based on a bond 

graph representation, and the solver uses time derivative equations to compute the 

simulations. Its big advantages lie on its usability and its small simulation time compared to 

3D simulation software. It allows an easy simulation of big and complex multi-physics 

systems. Therefore, Amesim is mainly used in the domains of automotive and aeronautics 

where systems are obviously complex to configure and analyze, even as ADAS and 

autonomous vehicles. 
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Figure 2: Amesim Multiphysics usage example. Reprinted from (2) 

 

The partnership with the company Siemens Industry Software provided Amesim 

academic licenses for the students. Thus, Amesim became the software used to model the 

articulated vehicles and simulate its behavior when executing planned trajectories. Amesim 

provides trustworthy modeling of all subsystems of a vehicle and it is a very powerful tool to 

enhance the simulation part of the project.  

Therefore, this project represents the point where industry meets university and real 

problems faced by several companies can be studied and solved together. For the university, 

working on a relevant and recent theme is quite important because it allows the institution to 

participate on present industrial problem solving. For the industry, a scientific research 

assuring that its solutions and products are efficient and providing a solid theoretical 

background is extremely useful to promote its products, mainly to its customers and 

supporters. 

 

2. STATE OF THE ART 

 

In this section, a description of the work already developed concerning trajectory 

planning will be described (3). The goal is to introduce the basics concepts that are used in 

this project as well as to present the existing tools to attack the trajectory planning problem.  

First of all, the difference among path and trajectory must be clarified. 
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A path consists on a sequence of configurations taking into account boundary 

conditions at the beginning and at the end. It basically means a geometrical trace that the 

concerned vehicle should follow without any collision. 

Finally, a trajectory represents a sequence of states visited by the vehicle, 

parameterized by velocity, time, and kinematics. Trajectory planning tries to outline the actual 

vehicle’s transition from one feasible state to the next, regarding kinematics limits based on 

vehicle dynamics and route boundaries. 

Essentially trajectory planning encompasses path planning in addition to planning 

how to move based on velocity, time, and kinematics. 

 

2.1. Planning technique 

 

In general, planning for autonomous or intelligent driving is divided into four classes 

(3), including route planning, path planning, maneuver choice and trajectory planning. The 

flowchart of the trajectory planning can be seen in Figure 3. 

 

 

Figure 3: Flowchart of trajectory planning. Recreated from (3) 
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Route planning is simply finding the global route from a given origin to a 

destination. It does not take vehicular dynamics into account, so it is not within the scope of 

the project. 

Once the route is defined, it is necessary to represent the environment in a way that 

enables the path planning. Therefore, the physical space shall be transformed in a state space 

that represents the set of all possible states that a vehicle can be in. The state space includes 

information like the vehicle position and orientation. Some search space algorithms are 

presented in 2.2. 

Path planning is the task to find a path in the state space that connects an initial 

configuration to a final configuration and that does not collide with any obstacle. The path 

planning can be tied to a maneuver search. A brief description of path planning algorithms is 

presented in 2.3. 

Maneuver is a high-level characterization of the motion of the vehicle, with regard to 

the vehicle’s position, speed and steering. For instance, a maneuver can be “going straight 

forward” or “turning left”. 

So, the path planning acts as input to the search for the best maneuver, i.e. the 

maneuver which places the vehicle as close to the planned path as it is possible. Based on the 

best maneuver, the path search can change, as shown with a feedback loop between these two 

modules. 

Finally, once the path is finalized, the final trajectory planning is generated. 

 

2.2. Search space for planning 

 

When planning a vehicle motion, the space must be discretized and digitally 

represented in a way that the physical space is transformed into a state space describing the 

vehicle position, orientation, velocities and all other useful measures. The efficiency of this 

space description is essential to optimize the computational speed. 

Five algorithms are briefly described next and are figuratively represented in Figure 

4. These algorithm techniques can be simultaneously employed, improving the planning 

capabilities. Once the search space is built, the planning algorithms are ready to start looking 

for the best path and trajectory. 

 

2.2.1. Voronoi Diagrams 
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Voronoi Diagrams, also called Dirichlet tessellation, is a partitioning of a plane into 

regions based on distance to points in a specific subset of the plane. Basically, the algorithm 

tries to minimize the distance between the vehicle and its surrounding obstacles. This kind of 

technique is usually employed on static environments such as parking lots, once dynamic 

obstacles may cause discontinuities and be unsuitable for non-holonomic vehicles. 

 

2.2.2. Occupancy grids and costmaps 

 

These both methods work similarly, discretizing the state space into a grid whose 

cells are associated to the probability of each cell being occupied by an obstacle or to the 

proportional cost of traversing such cell. 

 

2.2.3. State Lattices 

 

State Lattices are seen as a generalization of grid methods once Lattices are 

constructed of simple motion primitives connecting one state to another, in terms of position, 

curvature or time. Consequently, it connects the initial state to the final one, regarding the 

boundary conditions. 

 

2.2.4. Driving corridors 

 

Driving corridors represent a continuous collision-free space that is limited by 

environment and obstacles boundaries. Each vehicle has its own driving corridor and its 

center line will form the path around which the trajectory to be followed is planned. 

Once this technique is very dependent of the environment representation, some 

constraints may appear and compromise real-time planning. 
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Figure 4: (a) Voronoi Diagram; (b) Occupancy Grid; (c) Costmap; (d) State Lattice; and (e) Driving Corridor. 

Recreated from (3). 

 

2.3. Path Planning 

 

The step of finding the best geometric path for the vehicle to follow is usually 

divided into two different approaches. 

The first one uses incremental sampling or discrete geometric structures to find the 

best sequence of actions to be realized. It re-uses information from previous searches to 

increase search speed. Two incremental search methods will be presented in this section: the 

Rapidly-exploring random tree and the Lattice Planners. 

The second one is a local search that uses multiple final states to find the single best 

action. 

 

2.3.1. Rapidly-exploring random tree (RRT) 

 



 

 

 

 

Page | 18 

The Rapidly-exploring random tree (RRT) algorithm creates a data tree. This tree 

basically consists of feasible paths that are built online by stochastically extending branches 

towards randomly generated target configurations.  

RRT is probabilistic complete, which means if there is a solution for the path 

planning problem, the probability of the algorithm finding it goes to one as the iteration time 

goes to infinity. Moreover, this method can be easily implemented in real-time and guarantees 

kinematics feasibility. However, it can create jerky paths and does not verify collision 

checking, what may be problematic and time-consuming in an environment full of obstacles. 

Furthermore, there is always a compromise between optimization and exploration speed. 

 

2.3.2. Lattice planners 

 

As already described, state lattices construct a discrete search space which enables 

relevant state continuity. Instead of randomly explore the states, this method acquires the goal 

state in a deterministic way, satisfying the differential constraints of the vehicle. It reduces 

computational time and has a good performance for non-holonomic vehicles. 

This method guarantees optimality and smoothness of the solution once it does not 

introduce discontinuities. Also, the path plan is very close to the real motion of the vehicles. 

However, exhaustive sampling may lead to unnecessary computational complexity and 

oscillations may be present due to problematic discretization in the heading angle. 

 

2.3.3. Local search 

 

Searching the entire graph in real-time is not always efficient, so a local search uses a 

different approach trying to reduce the search space regarding distances and time. Probably 

one of the most employed methods consists on lateral shifting a given geometric curve, 

generally splines or clothoids. The results are then evaluated by a cost function taking into 

account several parameters as distances, time and collision checking. This method may not 

perform very well inside complex environments and the Figure 5 describes it better. 
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Figure 5: Local search examples. Reprinted from (3). 

 

2.4. Experimental issues: robot pulling a trailer 

 

An application of the trajectory planning method is the experimental work performed 

by a French research team from the Laboratoire d'Analyse et d'Architecture des Systèmes - 

CNRS (4). The trajectory planning was performed on a nonholonomic system, i.e. a system 

whose state depends on the path taken in order to achieve it, represented by a mobile robot 

pulling a trailer (see Figure 6). Car-like vehicles are examples of nonholonomic systems. 

 

 

Figure 6: Robot and trailer used in experiments. Reprinted from (4) 

 

The robot was a two driving-wheels mobile robot equipped with an odometer 

capable of giving the position and the direction of the robot as well as an angular encoder that 

gives the absolute direction of the trailer. The robot was attached to a trailer, so the system 

was an articulated vehicle. It also had a computer environment composed of Unix 

workstations and on-board processors. 

The experimentation can be divided in three main steps: the path planning, the 

trajectory planning and the control law. 

The path planning method implemented here relied on a geometric and on a local 

planner. The geometric planner computed a collision-free path using the Random Path 
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Planner algorithm (RPP), the random path planner presented in (5). It does not take into 

account the kinematic constraints. This path is then approximated by a sequence of collision-

free and feasible paths computed by the local planner, without taking into account the 

obstacles. 

Once a path is defined, the computing of the velocities of each wheel along the 

planned path gives the trajectory.  The velocity and acceleration constraints must be taken into 

account. The challenge at this level is to find the minimum-time trajectory. For instance, if the 

shorter path is not regular enough, the robot will have to stop at some points, increasing 

trajectory time. 

Finally, to get the trajectory to the motion of the system, a simple control law was 

chosen. When the robot goes forward, the trailer is ignored and the robot is stabilized using 

this control law. But when the robot goes backward, it is necessary to define a virtual robot 

which is symmetrical to the real robot with respect to the wheel axle of the trailer (see Figure 

7). The same control law is then applied to the virtual robot. 

 

 

Figure 7: Virtual robot. Reprinted from (4). 

 

The experiment results are showed below. In every scenario, the goal was reached 

with accuracy of approximately 10 cm. The length of the paths is around 15 meters and the 

average linear velocity is 0.5 m/s. It is foreseen that improving the control law can lead to a 

better accuracy. 
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Figure 8: Results of the experiment. Reprinted from (4). 

 

3. PROJECT OVERVIEW AND DELIVERABLES 

 

By analyzing the state of art, the timescale of the project and the available resources, 

the three parts involved (the students, Siemens and the project advisor) decided the guidelines 

of the project. In order to achieve the main objective, which is to develop a trajectory 

planning method and to simulate it with Amesim, some decision were taken. In this section, 

these decisions will be introduced in order to give an overview of the project. 

Considering that the project aims to explore the trajectory planning of an articulated 

vehicle, it is mandatory to define the kinematics modeling for this type of vehicle. A 

theoretical modeling of an articulated vehicle, including the differential equations of its 

movement, was defined and applied in the trajectory planning method. 

A much more realistic model was created with Amesim. This model is an important 

part of the project as it provides a reliable way to simulate how real articulated vehicles would 

behave when following the planned trajectories. Both theoretical and Amesim models are 

introduced in section 4. 

The method here developed to plan trajectories follows the technique presented in 

the state of art, section 2.1. 

For this project, it is considered that the articulated vehicle must travel in a bi-

dimensional space with static obstacles. Since this project will consider static and pre-defined 

environments, SLAM (Simultaneous Localization and Mapping) planning won’t be primarily 

studied because it emphasizes mostly obstacle prediction and traffic environment modeling. 

To plan a trajectory in such environment, the space is discretized and represented as 

a state space. Each state is defined by the configuration of the vehicle (Cartesian coordinates 
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and orientation of the front and rear vehicle) and the motion primitives connecting it to 

previous states (speed, steering angles and time). In other words, the state is tied to the 

dynamic conditions that led the articulated vehicle to assume a specific configuration in that 

particular moment. This approach is similar to the State Lattices from 2.2.3. 

The path planning developed in the project was based on two algorithms. The main 

path planning algorithm chosen was the RRT, briefly introduced in the state of art. The 

algorithm is detailed and discussed in section 5, along with the reasons that guided to this 

choice. A secondary path planning algorithm, called Dubins path, was used to complement 

the RRT. 

Python has been chosen as the main programming language once it grants flexibility 

to code and experiment new features. Even though there are other languages with a better 

computation power than Python, this criterion has not been a major priority. 

A simplified maneuver search was incorporated into the path planning algorithm. As 

a result, the algorithm is capable of providing the trajectory for articulated vehicles. 

A use case was designed in which the trajectory planning algorithm is implemented. 

The algorithm output is then simulated in the Amesim model. The goal is to validate if the 

planned trajectory can be followed by a real articulated vehicle. The results from these use 

cases are discussed in sections 7.5 and 8.3. 

Therefore, the resulting deliverable of this project is the script that implements the 

trajectory planning method. 

 

4. KINEMATIC MODELING OF AN ARTICULATED VEHICLE 

 

4.1. Theoretical model 

 

The non-holonomic RRT algorithm requires the input of the articulated vehicle’s 

kinematics equations since the modeling is a 4-dimensions problem and depends on the four 

variables that describe the movement of this kind of vehicle. 

Basically, the parameters are x(t), y(t), θ(t) and α(t), where 𝑥(𝑡) and 𝑦(𝑡) are the 

coordinates of the front vehicle’s rear axle, θ(t) represents the orientation of the front vehicle 

and α(t) is the relative bend of the rear vehicle. In this project, a tractor-trailer model will be 

considered, corresponding to a 4-wheel front tractor and a 2-wheel passive trailer, both linked 
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by a revolute joint. The joint acts as a mechanical stop to the movement. The modeling can be 

better understood seeing the Figure 9: 

 

 

Figure 9: A model for the tractor-trailer vehicle. Reprinted from (6).  

 

Some assumptions are done in order to use the modeling. First, the bodies move in a 

plane and the contact between each wheel and the ground is a pure rolling contact. Also, the 

revolute joint connecting the two parts of the vehicle is located at the middle of the tractor’s 

rear axle – which means that it is an on-axle model. These propositions imply that there are a 

tractor’s maximal steering angle and a maximal bending angle. 

So, if the geometry of the vehicle is correctly derived, the set of equations that 

describe the articulated vehicle kinematic is (7): 

𝑥̇(𝑡) = 𝑣(𝑡)𝑐𝑜𝑠𝜃(𝑡) 

𝑦̇(𝑡) = 𝑣(𝑡)𝑠𝑖𝑛𝜃(𝑡) 

𝜃̇(𝑡) =
𝑣(𝑡)

𝐿1
𝑡𝑎𝑛𝜑(𝑡) 

𝛼̇(𝑡) =  𝑣(𝑡) ∗ [
𝑡𝑎𝑛𝜑(𝑡)

𝐿1
−

sin(𝛼)

𝐿2
] 

Where 𝑣(𝑡) denotes the velocity of the tractor’s rear point, 𝜑(𝑡) the tractor’s steering 

angle, 𝐿1 the length between the tractor’s axles and 𝐿2 the length between the trailer’s rear 

axle and the hitch point. 

These equations have a non-holonomic nature so it is not possible to integrate them. 

Nevertheless, if we consider that 𝑣(𝑡) and 𝜑(𝑡) are constants in time, the system turns out to 

be integrable. 
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4.2. Amesim model 

 

The theoretical model used in the non-holonomic trajectory planning algorithm is 

only a simplified model of an articulated vehicle chassis. It means that an actual vehicle 

would have a lot of different subsystems including tire, suspension, chassis, steering and 

powertrain systems that need hundreds of different parameters to simulate the behavior of an 

articulated vehicle as accurately as possible. 

Furthermore, the trajectory planning algorithm uses simplified equations to simulate 

a predicted displacement of the vehicle in the space. But once it is intended to apply the 

solution to a real articulated vehicle, hardware turns out to be essential in order to convert the 

trajectory planning outputs into inputs to the vehicle. Therefore, it could accelerate, brake and 

steer towards trying to follow the planned path. 

Hence, all these subsystems are modeled in Amesim. So a trustworthy simulation is 

able to replace an entire real vehicle and its hardware. The model and how its components are 

related are represented in the draft below. The subsystems are described in the next 

subsections. 

 

 

Figure 10: Complete Amesim physical model. 
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4.3. Chassis, suspension and steering subsystems 

 

The chassis is modeled by three blocks representing the axles of the vehicle. Two of 

them do not steer (both rear axles), whereas the tractor’s front axle may steer and 

consequently has the steering model connected to it. The axle block is responsible for 

updating the states that describe the position of the wheels with respect to the chassis. It takes 

into account suspension, steering, brakes and engine effects. In order to improve the model, 

an elastokinematic subsystem could also be attached to it. 

Both rear axles have a simple suspension using a spring-damper model. The steering 

axle illustrated in Figure 11 contains more detailed description including an anti-roll bar to 

avoid rolling effects and an oscillating axle – a more resilient suspension employed on heavy 

transport. 

 

 

Figure 11: Chassis, suspension and steering subsystems. 
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The steering is modeled by a pinion-rack connected to a rotary spring-damper which 

receives the input of the steering wheel. Here, the steering angle is limited to 30 degrees. 

The engine effect comes from the torque transmitted by a differential and the brake 

effect comes from a simple friction torque generator. Both engine and braking inputs will be 

further described. 

After all the three axles are modeled, they are connected to a spherical joint. It is 

noted here that a revolute joint is used in the theoretical model. This is explained by the fact 

that the theoretical model considers only the x-y plane while Amesim does its calculations for 

the 3D space. 

 

4.3.1. Tire subsystem 

 

The tire model is illustrated in the image below. It is composed of 5 main 

components: road model, road grip model, tire model, tire belt model and tire kinematics 

model. 

The road model creates a contact between the tire and the road. 

The road grip model represents the adherence between the tire and the road, so it 

allows a simulation in many different soils (dry, wet, snowy, etc.) depending on the road grip 

parameter inputted. 

The tire model generates the contact force at the tire/soil interface. This is a pure 

dynamic block and allows a longitudinal/lateral behavior analysis of the tire. 

The tire belt model allows the computation of characteristic inputs of tire models 

such as side slip angle, longitudinal slip, camber angle, vertical load of the tire and turn slip. 

The tire kinematics model is used to compute all kinematic elements of center of tire 

contact. It outputs variables such as absolute velocity of contact point and wheel rotary 

velocity. The tire stiffness is inputted to this model and a simple spring-damper has been 

used. 
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Figure 12: Amesim tire model. Reprinted from Amesim manual. 

 

4.3.2. Powertrain subsystem and brake control 

 

The powertrain subsystem is responsible by the engine modeling as well as the 

power transmission. In this project, the powertrain has a simple model. The throttle signal 

comes from the driver subsystem and is converted into torque by a torque converter. Then, a 

rotary load computes the inertia of the vehicle, outputting a rotary velocity. The torque goes 

through a reducer, a rotary spring-dumper and finally comes to a central differential. The 

central differential is connected to two other differentials corresponding to each axle of the 

tractor. 

Moreover, simple control takes charge of calculating the right throttle to be 

transformed in torque. It takes into account the maximum power of the engine, 150 kW in this 

example, and then is multiplied by a first order system which adds a lag to the response of the 

throttle. 

The brakes control is very similar to the throttle control. An input from the driver is 

multiplied by gains and a first order system, also adding a lag to the response. The signal is 

received by the friction torque generator. The friction torque is then applied between the 

wheel and the spindle. 
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Figure 13: Powertrain subsystem and brake control. 

 

4.3.3. Driver subsystem 

 

The driver subsystem used in this project is a built-in Amesim feature that works as a 

path follower. It is composed by five main blocks that control longitudinal and lateral driver 

based on inputs as coordinates of the path to be followed ((𝑥, 𝑦) coordinates and radius of the 

curve, with 0 meaning straight line) and target speed at each point of the path. 

Given a trajectory in a .data file, the driver block produces steering wheel commands 

-that will be further inputted in the steering subsystem - in order to follow the trajectory. Two 

PIDs are responsible to correct the trajectory of the vehicle, one acting on the distance to the 

reference trajectory and the other acting on the heading. Signal coming from sensors, such as 

speed and lateral acceleration, feedbacks the controllers in order to minimize errors. 

The longitudinal driver handles the accelerator (throttle) and brake pedals according 

to the target speed orders. The orders feed the powertrain and brake subsystems. 

Generally speaking, the driver subsystem is supposed to be the component 

responsible for converting the trajectory planner outputs into braking, accelerating and 

steering inputs. The simulation of all the subsystems described along with the trajectory 

planning inputs is a good prediction of a real articulated vehicle behavior.  
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Figure 14: Driver subsystem. Reprinted from Amesim manual. 

 

5. CHOOSING THE RRT ALGORITHM 

 

A deeper analysis on the trajectory planning methods mentioned on the state of the 

art section leaded us to a single choice concerning the best method to implement on this case. 

The RRT seems to be the most appropriate one for several reasons. 

First of all, it is a method that has been extensively used in recent years for path 

planning, including many cases of autonomous driving, which proves that it is a top research 

field on this subject. Yet RRT is a probabilistically complete algorithm (8) and even if it does 

not necessarily converge to an optimal solution, finding a solution for a complex high-

dimensional problem like this one is already satisfactory. RRT also guarantees kinematic 

feasibility and handles general dynamical models. Finally, it can easily be implemented in 

real-time, and even if this is not the scope of this project, this is an advantage as it allows 

future work on the matter to implement real-time planning. 

On the other side, RRT main drawbacks lie in the jerky paths it randomly creates, as 

well as the need of a collision checking routine for every step when developing the random 

tree. In a workspace with many obstacles it can result in computational complexity. 

However, since the algorithm has already been extensively applied and studied, there 

are many optimizations that were presented in the literature that allows overcoming the 

algorithm drawbacks. 



 

 

 

 

Page | 30 

 

Global path 
planner 

V
eh

ic
le

 t
yp

e 

H
it

ch
in

g 

C
u

sp
s?

 

O
p

ti
m

iz
at

io
n

 

O
th

er
 

Si
n

gl
e 

tr
ai

le
r 

M
u

lt
ip

le
 t

ra
ile

rs
 

O
n

-a
xl

e
 

O
ff

-a
xl

e
 

Y
e

s 

N
o

 

Fe
as

ib
ili

ty
 

N
u

m
b

er
 o

f 
cu

sp
s 

Le
n

gt
h

 

D
is

ta
n

ce
 f

ro
m

 o
b

st
ac

le
s 

R
u

n
ti

m
e

 [
s]

 

Le
n

gt
h

 o
f 

p
at

h
 [

m
] 

Two-step (or 
RPP) 

          6 15 

RRT           - - 

grid search           30 100 

Feasible 
velocities 
polygon 








 




 - - 

Least squares           20 40 

MPC           - - 

Lattice           - - 

‘Car track' 
method 







 



 20 200 

Table 1: Evaluation of path planning methods. Reprinted from (9). 

 

The Table 1 presented on (9) shows a comparison among many path planning 

methods already employed, including the RPP (or "Two step") used by Laumond on (4), 

RRT, grid search, MPC and Lattice planners already mentioned in this report. In addition, this 

paper proposes an alternative method called "Car track method" based on lattice states and 

local search approaches. 

Regardless of lack of information concerning RRT runtime and length of path in the 

evaluation above, we can state that the algorithm is one of the most applied when planning 

paths. 

In this section, a more detailed explanation of the RRT method will be presented as 

well as a comparison among the standard algorithm and its variations and improvements 

possibilities. 
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The RRT algorithm considers a system composed by a known obstacle region, an 

obstacle-free space, a goal region and an initial state. It presents basically seven main 

functions that are described below (10). 

1) Sampling: This function randomly samples a state in the obstacle-free space. 

2) Nearest: It returns the nearest node from a randomly sampled state according to a cost 

function. Without differential constraints, the cost will be the Euclidian distance. 

3) Steer: The Steer function returns a control input that drives the system from a state to 

another, commonly from the randomly sampled state to its nearest node. 

4) Collision Check: This function is not a part of the RRT, so a collision check method 

must be chosen and incorporated in the algorithm in order to verify if the planned path 

lies inside the collision-free space. 

5) Near-by vertices: It returns the vertices that are near an input node, generally 

according to an area or volume function. 

6) Insert Node: It inserts the new node to the tree, creating a connection between the 

node and its parent. It also assigns a cost to the new node. 

The pseudo-code and the diagram presented below can explain better the method. In 

the algorithm, 𝐺 is the tree topological graph, 𝐶 is the configuration space, 𝑥𝑟𝑎𝑛𝑑𝑜𝑚 is a 

configuration randomly sampled from 𝐶, 𝑥𝑛𝑒𝑎𝑟 is the vertex which is closest to 𝑥𝑟𝑎𝑛𝑑𝑜𝑚 in 

terms of distance, 𝑢 is a selected input minimizing the distance between 𝑥𝑟𝑎𝑛𝑑𝑜𝑚and 𝑥𝑛𝑒𝑎𝑟, 

and 𝑥𝑛𝑒𝑤 is the new configuration.  

 

 

Figure 15: RRT simplified algorithm. Reprinted from (3). 
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Figure 16: RRT’s steps and random tree algorithm. Reprinted from (3). 

 

Briefly, the RRT starts with an empty tree that is incrementally filled by sampling 

random configurations. The samples are added to the tree choosing as its parent the nearest 

state in the tree that can be reached with an input. A collision check is done in order to verify 

if the tree contains a feasible path. 

The next subsection will introduce an improvement to the RRT method which proves 

that a rewiring function is capable to avoid high cost paths as a final solution – a negative 

point of RRT algorithm.  

 

5.1. RRT* 

 

Regarding to effectiveness, RRT is a sample-based approach that usually relax 

completeness requirements in order to achieve computational efficiency. Even though it is 

probabilistically complete, it is proved that its probability of convergence to an optimal 

solution is actually zero (11). It is explained by the fact that RRT always choose the nearest 
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node as parent of the randomly sampled state. It means the algorithm does not analyze the tree 

in terms of cost and perhaps the nearest node is not the best choice. 

Hence, the algorithm has been improved and a new method has been come up with, 

the RRT* (called “RRT-star”). This method is an alternative with asymptotic optimality 

which means that it is almost-sure it will converge to an optimal solution. It makes RRT* an 

advantageous solution to real-time applications, once it quickly finds a feasible motion plan 

and also improves this plan toward the optimal solution during the execution time of the 

current plan.  

The biggest difference to the RRT method is that the RRT* considers all the nodes in 

a defined neighborhood of the random sample and evaluates the cost of choosing each of the 

node inside this neighborhood as parent of the random sample. It allows a rewiring phase that 

usually reduces the cost of reaching the sampled nodes. 

The neighborhood space is generally defined as a circle of volume 𝑘 =  𝛼 (
𝑙𝑜𝑔(𝑛)

𝑛
)

𝑑

, 

where α is a fixed number and 𝑑 is the search space dimension.  

Furthermore, extensions may improve the RRT* method. For instance, in online 

applications, the Committed Trajectory (11) technique starts an iterative planning phase just 

after the initial planning phase is completed. It considers a committed trajectory – a piece of 

the initial planned path – and while riding it, the vehicle tries to optimize the remaining 

portion of the trajectory. Thus, the path is optimized iteratively while the vehicle is executing 

the previously planned path. 

 

5.2. Closed-loop RRT 

 

RRT has been previously employed to autonomous urban driving (12) (13). The 

main difference in this case, comparing to driftless robots, is the complex and instable 

dynamics of these vehicles. 

To compensate this, RRT can be employed with a closed-loop stabilizing controller 

(12). The algorithm grows a tree of feasible trajectories originating from the current vehicle 

state that attempts to reach a specified goal set. It runs a forward simulation using a vehicle 

model and the controller to compute the predicted state trajectory 𝑥(𝑡). Given a reference 

input 𝑟, the controller is used to give high rate commands 𝑢 taking into account the vehicle 

dynamics. 
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Even though the controller is not the goal of this project, the possibility to use the 

RRT with a closed loop was considered as an advantage.  

Each time a difference is observed between the actual position and the predicted 

position, the closed loop RRT must perform an online repropagation, respecting the 

committed trajectory whose end coincides with the beginning of the new trajectory to be 

calculated. 

 

 

Figure 17: Repropagation. Reprinted from (12). 

 

6. HOLONOMIC RRT* 

 

At a first moment, the algorithm developed was a holonomic path planning (since 

maneuvers and time were not considered in this first approach, as well as the kinematics 

constraints of the vehicle), for reasons of learning the structure of a simpler RRT. Also, once 

the RRT* is a variant of the RRT with some functions in addition, this method has been 

primarily implemented for the holonomic planning. A further implementation that has taken 

into accounts the kinematics constraints and degrees of freedom of an articulated vehicle and 

will be explained in section 7. 

The functions of the RRT* has successfully been developed such as Sampling, 

Nearest Nodes, Node Insertion, Re-wiring and Collision Detection. The latter uses a Ray 

Casting (14) method to identify if a node is inside a pre-determined obstacle. The method says 

that a ray starting from a point and pointing to any direction will cross the borders of a 

polygon an odd number of times if and only if the point is inside the polygon. 
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In addition, a GUI helps the algorithm to be debugged and visualized in a more 

intuitive way. At a first glance, it was decided to use the library PySide (a Python alternative 

for the famous C++ QT library) to develop the graphical features. However, it seemed easier 

and faster to use the library PyGame which meet greatly the expectations. Moreover, this 

library has been used several times in other path/trajectory-planning projects. 

Concerning the tree exploration, the script was supposed to use a kd-tree, a space-

partitioning data structure for organizing points in a k-dimensional space (15). Nevertheless, it 

was found out that this structure does not allow updates and therefore requires a full complete 

tree to make a search within. Thus, a structure using simple nodes containing information 

related to cost (Euclidian Distance through the tree nodes from the start point) and parent 

node has been used. 

The holonomic RRT* algorithm showed some interesting results. The developed 

example consists in linking a start point (upper left corner at Figure 18) and an end point 

(lower right corner at Figure 18). For that, nodes are randomly created and inserted in the 

nodes tree. If needed, the points are successfully “re-wired” as the algorithm imposes. The 

graphical feature allows clearly a better understanding of the algorithm. 

 

 

Figure 18: Propagation of the nodes tree (left) and exploration for finding the best final path (right). 

 

These preliminary tests did not include obstacles and consequently were not very 

conclusive. Therefore, the collision detection was developed and allowed a still better 

comprehension of what happens when obstacles are added to the environment and what is the 

expected behavior of the RRT* algorithm (Figure 19) 
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Figure 19: Propagation of a RRT* algorithm in an environment with obstacles (green rectangles). 

 

7. TRAJECTORY PLANNING ALGORITHM FOR NON-HOLONOMIC 

ARTICULATED VEHICLES 

 

After the holonomic RRT* implementation, the differential equations presented in 

4.1 were integrated to the algorithm, transforming it into a non-holonomic planner. It means 

that the displacement of the articulated vehicle is now bounded by its kinematics equations. 

Besides that, the whole algorithm was widely modified in order to produce more robust 

software. It is also important to note that the non-holonomic RRT* is much more complex 

than the holonomic RRT* once the latter can connect two configurations without taking into 

account the vehicle’s movement constraints. That is why it was decided to implement the 

traditional RRT for non-holonomic trajectory planning. 

The next subsections will present in detail the main functions and classes of the 

algorithm, as well as the first results of this algorithm. 

 

7.1. Nodes Tree 

 

The RRT algorithm is based on a Tree composed by numerous Nodes. Each Node is 

connected to another through an Edge. Considering that, a complete Tree data structure has 

been developed. 
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The Tree contains a Node Map represented by a Python dictionary. In this Node 

Map, the array containing the articulated vehicle configuration (𝑥, 𝑦, 𝜃, 𝛼) is the key and the 

Node structure itself represents the value. Thus, it is always possible to have access to a Node 

if its coordinates are precisely known. The entire Tree is also accessible via the Node Map 

keys. In addition, the Tree permits to add and remove an Edge. 

The Edge structure keeps information concerning the path between two Nodes. In 

this way, an Edge has variables informing its source and its destination, as well as the cost 

between the two Nodes which is the distance the vehicle needs to travel to get from one Node 

to another following the outputted path. The necessary inputs (velocity 𝑣 and tractor’s 

steering angle 𝜑) to get from the source to the destination and the intermediary points 

between them - once the path is discretized in many points between two Nodes - are also 

stored. 

The Node Structure saves four main contents. First, it contains its configuration as 

already described. It also knows which Node is its parent, i.e., the Node that comes right 

before it in the Tree and is bonded to it by an Edge. The distance from the root of the Tree and 

the Node is also stored. The distance of a Node is always the distance of its parent summed 

with the cost of the Edge that connects both. Lastly, a Node knows all its adjacent Edges in 

which it is a source. 

 

7.2. Collision Detection 

 

At a first moment, the project was supposed to use a built-in Python library to treat 

the collision detection between the vehicle and the obstacles in the surrounding environment. 

The Box2D (16) – an engine for simulating rigid bodies in 2D – has been considered for that 

purpose. However, the library has been analyzed and it uses the Axis-Aligned Bounding Box 

(AABB) (17) method to verify whether there is a collision or not. In this way, it was decided 

to develop from scratch this collision detection method since it could let the code more fluid 

and the project would be less dependent on 3
rd

 party libraries. 

The AABB method consists on finding for each obstacle or vehicle the axis-aligned 

minimum bounding box, i.e., the minimum bounding box rectangle in which the edges of the 

box are parallel to the coordinate axis of the system. That way, the vehicle and the obstacles 

are all represented by axis-aligned “rectangles”, which let the collision verification very easy 

to be done. 
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The Figure 20 allows a clear understanding of how the method works. As it can be 

seen, the AABB method indicates a collision even in situations where the two compared 

bodies do not collide but only their bounding boxes.  

 

 

Figure 20: Axis-aligned bounding box. Reprinted from (18). 

 

Theoretically, it could be a problem as the method indicates a “fake collision” even 

before the actual collision occurs. However, if the problem is considered in real life and not 

only in simulation, the margin taken into account is actually desirable for two reasons. First, it 

is not very safe to have the vehicle riding very close to obstacles, so a better path planning 

solution would not even generate possible paths alongside obstacle. Also, the accuracy of the 

controller that will drive the trajectory in practice is not known. It means that when inputting 

the planned trajectory into an articulated vehicle controller, the vehicle would not follow 

exactly the path. This situation is clearer when comparing the path driven by the Amesim 

controller and the path planner output. Therefore, a margin space between the vehicle and the 

obstacles turns out to be necessary. 

Concerning the collision detection calculations, it is easily implemented. The 

obstacles are static bodies, so their bounding boxes are calculated at the beginning of the 

algorithm and do not change. The articulated vehicle is a dynamic body which means that its 

configuration changes with time. Therefore, at each time step the bounding box of the vehicle 

is recalculated. The dimension of the vehicle being constant, the algorithm takes the vehicle’s 

configuration and applies geometric equations in order to find the corners of both tractor and 

trailer. Once the corners of the two parts of the vehicle (tractor and trailer) are known, the 

vehicle bounding box is delimited by the maximum and the minimum 𝑥 and 𝑦 coordinates 

amongst all the corners. 
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Having all the bounding boxes of the environment calculated and aligned, the 

algorithm does 𝑛 comparisons between the existent bounding boxes where 𝑛 is the number of 

obstacles in the environment. The collision detection is made by verifying the veracity of the 

following set of inequations: 

𝑥𝑚𝑖𝑛𝑣𝑒ℎ𝑖𝑐𝑙𝑒
> 𝑥𝑚𝑎𝑥𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒

 

𝑦𝑚𝑖𝑛𝑣𝑒ℎ𝑖𝑐𝑙𝑒
> 𝑦𝑚𝑎𝑥𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒

 

𝑥𝑚𝑎𝑥𝑣𝑒ℎ𝑖𝑐𝑙𝑒
< 𝑥𝑚𝑖𝑛𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒

 

𝑦𝑚𝑎𝑥𝑣𝑒ℎ𝑖𝑐𝑙𝑒
< 𝑦𝑚𝑖𝑛𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒

 

 

Where 𝑥𝑚𝑖𝑛/𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛/𝑚𝑎𝑥 are the minimum/maximum coordinate values of a 

bounding box, considering all of its corners. 

 

7.3. Trajectory Planner 

 

The trajectory planner follows a traditional non-holonomic RRT implementation. 

First of all, the Nodes Tree is initialized and the pre-defined start configuration is set as root 

of the Tree. The algorithm aims to find a trajectory that connects this start configuration to an 

end configuration. For that, an N number of Nodes are randomly placed on the environment. 

For each Node, some steps are taken: 

 

7.3.1. Random Configuration 

 

A random configuration 𝑞𝑟𝑎𝑛𝑑𝑜𝑚 = (𝑥, 𝑦, 𝜃, 𝛼) is created following some 

boundaries: 

(𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛) < (𝑥, 𝑦) < (𝑥𝑚𝑎𝑥, 𝑦max) 

−𝜋 < 𝜃 < 𝜋 

−
𝜋

3
< 𝛼 <

𝜋

3
 

Where the (𝑥, 𝑦) boundaries are related to the pre-defined map and the 𝛼 boundaries 

are related to the maximum hitch angle an articulated vehicle may have. In this project, it is 

limited to 60º. As it can be seen, 𝜃 has no boundary limits. 

In theory, this random configuration should be connected directly to the Tree as it is 

done in the holonomic RRT*. However, the non-holonomic case imposes some kinematic 
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constraints once the vehicle displacement follows some defined equations. This way, it would 

be very costly to find a trajectory starting from an existing Node Tree and finishing in the 

exact random configuration – obviously respecting the movement constraints. Actually, it 

consists on the problem this project is trying to find a solution. But to face that in a smarter 

way, the next step is taken. 

 

7.3.2. Nearest Node 

 

So once the 𝑞𝑟𝑎𝑛𝑑𝑜𝑚 is created, the algorithm verifies whether it lies on an obstacle. 

If it is true, the configuration is rejected and another one is created. If it is not, the code 

continues and tries to find the Nearest Node 𝑞𝑁𝑒𝑎𝑟𝑒𝑠𝑡 of the random configuration among the 

Nodes already contained in the Tree. Then, these two configurations, 𝑞𝑁𝑒𝑎𝑟𝑒𝑠𝑡 and 𝑞𝑟𝑎𝑛𝑑𝑜𝑚 

should be connected. Instead, the algorithm apply some inputs (velocity 𝑣 and tractor’s 

steering angle 𝜑) to 𝑞𝑁𝑒𝑎𝑟𝑒𝑠𝑡, verifying where the resulting configurations lay down on the 

environment – called 𝑞𝑁𝑒𝑤𝑠. The new configuration 𝑞𝑁𝑒𝑤 will not be the random 

configuration but that one among the 𝑞𝑁𝑒𝑤𝑠 that is spatially closer to 𝑞𝑟𝑎𝑛𝑑𝑜𝑚, i.e., the 

configuration that minimizes the distance to 𝑞𝑟𝑎𝑛𝑑𝑜𝑚. 

 

7.3.3. Steering 

 

In order to find 𝑞𝑁𝑒𝑤𝑠, a Steering function is called. It is responsible for applying the 

inputs to an existent configuration, calculating the articulated vehicle movement equations 

and so generating a new configuration. The inputs are pre-defined on the algorithm and it has 

been considered that the vehicle will ride in low velocities and turn under low angles. The set 

of inputs used is: 

𝑣 𝜖 {1.0}     (
𝑚

𝑠
) 

𝜑 𝜖 {−
𝜋

24
, −

𝜋

12
, 0,

𝜋

12
,

𝜋

24
}    (𝑟𝑎𝑑) 

This way, five different input combinations are used considering the product between 

𝑣 and 𝜑. 

Between two configurations, the inputs are applied 𝑛 times, where 𝑛 ∈ 𝑁∗ and is 

always defined in relation to the maximum value of 𝜑, in such a way that applying the 
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maximum steering angle input 𝑛 times, the vehicle will vary its heading in approximately 

𝜃̇ = ±
𝜋

2

̇  𝑟𝑎𝑑 . The equation used to find 𝑛 is: 

𝑛 ∗ 𝜃̇ = 𝑛 ∗
𝑣

𝐿1
𝑡𝑎𝑛𝜑 ≅ | ±

𝜋

2
| 

Where 𝐿1 is the distance between the axles of the trailer.  

Applying the inputs 𝑛 times is useful to discretize the path between two 

configurations. It means that there will be 𝑛 intermediate points that indicate more precisely 

the trajectory between the configurations. When plotting the path, it also provides a better 

visualization. 

 

7.3.4. Node Insertion 

 

Following with the algorithm, 𝑞𝑁𝑒𝑤 is selected among all the 𝑞𝑁𝑒𝑤𝑠 generated and 

then the collision condition is verified by updating the vehicle bounding box according to the 

new configuration. The (𝑥, 𝑦) coordinates are also analyzed in order to guarantee that 𝑞𝑁𝑒𝑤 

lies on the defined map. A last test is also done to guarantee that the Tree does not contain 

𝑞𝑁𝑒𝑤, even though it is an improbable situation. The three conditions guaranteed, a new Node 

is created and 𝑞𝑁𝑒𝑤 is assimilated to it. A new Edge is created between 𝑞𝑁𝑒𝑎𝑟𝑒𝑠𝑡 and 𝑞𝑁𝑒𝑤, its 

cost is defined as the traveled distance between the two configurations (if 𝜑 is equal to 0, the 

cost is the Euclidian distance between the Nodes), and the intermediate points are stored in 

the Edge as well as the input set applied. Finally, having the 𝑞𝑁𝑒𝑎𝑟𝑒𝑠𝑡 distance from the root 

and the cost of the Edge, it is possible to find and set the 𝑞𝑁𝑒𝑤’s distance from the root as 

illustrates the equation below: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑞𝑁𝑒𝑤) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑞𝑁𝑒𝑎𝑟𝑒𝑠𝑡) + 𝑐𝑜𝑠𝑡(𝐸𝑑𝑔𝑒𝑞𝑁𝑒𝑤−𝑞𝑁𝑒𝑎𝑟𝑒𝑠𝑡
) 

 

7.4. Dubins path planning 

 

As discussed in 5, the RRT algorithm randomly creates nodes in order to build a 

space tree. When planning a trajectory connecting two points it is extremely unlikely for a 

node corresponding to the final configuration to be randomly generated. Therefore, a method 

to take the vehicle from a node in the RRT tree to its exact final position is required. 
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The Dubins path planning is a simple but effective solution to this issue.  This 

solution was first reported by Lester Eli Dubins (19) in 1957, and a description of its 

equations is presented in (8). 

However, the Dubins path method is only applied for the front vehicle, whose 

position and orientation can be defined. As in the RRT trajectory planning, the orientation of 

the rear vehicle can be calculated but cannot be controlled as it is only a consequence of the 

front vehicle’s movement.  

 

7.4.1. Dubins car 

 

The Dubins version of a simple car assumes that the vehicle has a constraint on the 

curvature of the path and that it can only travel forward. If the vehicle can also travel in 

reverse, then the path follows the Reeds–Shepp curve (8). Since this project deals with 

articulated vehicles, we will not consider the reverse gear. 

The kinematics equations of the Dubins car are the tractor’s equations of an 

articulated vehicle. These equations were already presented in 4.1. 

 

7.4.2. Dubins path segments 

 

Dubins showed that the shortest path for the Dubins car can always be expressed as a 

combination of no more than three path segments. This combination can be a sequence CCC 

or CSC, where C is an arc of a circle of radius ρ and S is a straight line segment. Each arc C 

can represent either a curve to the left (L) or a curve to the right (R). Therefore, there are six 

admissible Dubins paths: LSL, RSR, RSL, LSR, RLR and LRL. 

Note that the radius ρ of the C segments depends on the tractor’s steering angle φ and 

on the length between the axles of the car/tractor 𝐿1. 

𝜌 = 𝐿1/𝑡𝑎𝑛 (𝜑) 
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Figure 21: Example of the three Dubins path: (a) RSL, (b) RSR, (c) LRL. Reprinted from (20) 

 

7.4.3. Dubins path planning algorithm 

 

The algorithm developed for this project was based on the algebraic solution 

published in (21) and inspired in the C library from (22).The goal is to connect an initial 

configuration 𝑞𝑖 to a final configuration 𝑞𝑓 of the Dubins car, each one defined by the 

coordinates (𝑥, 𝑦) and the orientation 𝜃 of the front vehicle. Note that the relative bend of the 

rear vehicle α(t) is not taken into account, so a configuration for the Dubins algorithm is 

different from the configuration considered so far. 

𝑞 = (𝑥, 𝑦, 𝜃) 

The solution described in (21) consists of a set of equations for each admissible 

Dubins path. These equations are used to obtain the lengths 𝑡, 𝑝 and 𝑞 of each constituent 

segment of the Dubins path. For instance, if the Dubins path is a RSL curve, 𝑡 is the length of 

the R segment, 𝑝 is the length of the S segment and 𝑞 is the length of the L segment. 

However, this solutions was designed considering a normalized state (Figure 22) 

where the initial and final configuration are 𝑞𝑖
𝑛𝑜𝑟𝑚 = (0, 0, 𝛼) and 𝑞𝑓

𝑛𝑜𝑟𝑚 = (0, 𝑑, 𝛽) and the 

circle radius is equal to one. In order to apply the equations, we must first translate 𝑞𝑖 and 𝑞𝑓 

to this normalized configuration. At the end, the lengths 𝑡, 𝑝 and 𝑞 calculated for this 

particular state must be multiplied by the radius 𝜌 to give the lengths of each segment in the 

original configuration. 

The algorithm calculates 𝑡, 𝑝 and 𝑞 for every one of the six admissible Dubins path. 

The path with the shortest total length is elected the optimal Dubins path for the 

configuration. 
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Figure 22: Normalized configuration for the Dubins path equations. Adapted from (21). 

 

With the best Dubins path and its lengths, it is possible to apply the kinematics 

equations from 4.1 to define the vehicle’s states during the Dubins path, i.e., 

x(t), y(t), θ(t) and α(t). The information is used to complete the RRT tree and connect the 

RRT trajectory with the final destination. 

 

7.5. First results 

 

Having the algorithm finished, some tests were done in order to prove the proper 

functioning of what has been developed. A first example considers a 400𝑚 𝑥 400𝑚 map 

where the initial configuration of the articulated vehicle is (50𝑚, 50𝑚, 0°, 0°) and its final 

one is (350𝑚, 350𝑚, 0°, 0°). There are three known obstacles that the vehicle must avoid. 

The obtained result is showed in Figure 23: 

As it can be seen, the planner really avoids the obstacles with a margin in order to 

prevent any collision either in simulation or in a possible real-life implementation. The red 

line indicates the first traced path and the yellow line represents the Dubins path, generated to 

approximate the vehicle to its final configuration. The vehicle stops at 

(349.999𝑚, 349.999𝑚, 0.262°, 𝛼), where alpha is an arbitrary angle once the Dubins path 

does not control the trailer’s orientation. 
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Figure 23: First example planned trajectory. 

 

As a first experiment, it can be concluded that the algorithm presents a very good 

behavior. The trajectory is continuous and does not contain any cusps or singularities. Also, 

the output has enough straight lines, meaning that among the entire built Tree, the algorithm 

has chosen the less costly and curly path. Moreover, the output is not as jerky as the state of 

the art proposed, even if there are some curves in a row that could affect the lateral behavior 

of the vehicle. 

The outputted Nodes has been inserted into Amesim in order to verify how is the 

behavior of the vehicle being driven by the Amesim built-in controller, whose inputs come 

from the developed algorithm. Figure 24 shows the driven trajectory between the points with 

coordinates (120𝑚, 50𝑚) and (320𝑚, 250𝑚). 
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Figure 24: First example generated trajectory from Amesim. 

 

It can be concluded that the controller cannot precisely handle the ride though the 

proposed path is followed. When performing a curve, the controller takes a long time to react 

to heading perturbations, and a kind of overshooting seems to let the response to another entry 

a little slow. The overshooting causes a curve that was supposed to have a heading change of 

90º degrees to have a higher change. 

Moreover, the two sequences of three curves in a row proposed by the planner should 

have similar behaviours when followed by the controller. However, the second sequence is a 

bit more flattened, probably because the errors during the ride are accumulated. 

This example evidences the importance of having a correctly tuned controller when 

trying to reproduce a planned trajectory in real-life (or in simulation at least). As the Amesim 

controller have two PIDs – in fact, the PID that controls the distance to the reference 

trajectory has the derivative gain set to 0 and the PID that controls the direction discrepancy 

has only the proportional gain – if all the gains are not very well tuned, the driven trajectory is 

expected to be like the results seen in Figure 24. For instance, a derivative gain could make 

the system react faster and the integral gain could reduce the interference of accumulative 

errors during time. 
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8. PROPOSED IMPROVEMENTS 

 

As the first results can exhibit, few point improvements might have been assembled 

to the proposed solution. It is important to state that there will always be several possible 

optimizations, once the RRT is constantly researched and many improvements have already 

been considered. However, four improvements have been considered in this project: 

1) The 𝛼 angle is proposed to tend to 0. A trajectory planning is supposed to control 

the four components of the articulated vehicle. Though, in practice, great part of 

useful applications would require both tractor and trailer aligned (𝛼 = 0°). 

Besides that, the precise control of the trailer’s heading along with the tractor’s 

heading would need the backwards motion to be controlled. The reverse control 

of an articulated vehicle seems to be a very complex task due to the system 

instability and additional constraints such as the jackknife avoidance (23), where 

the hitch point angle increases and the tractor and the trailer fold together. 

2) The fewer curves the planner proposes the better in order to have a more realistic 

trajectory and to prevent error accumulation in Amesim. Therefore, it is proposed 

a 3-curves optimization in which the planned path is revisited and a sequence of 

three curves in a row (if it exists) is tried to be reduced to only one curve. For 

that, the Dubins path algorithm is recalled. 

3) The Amesim controller containing the two PIDs may be better tuned in order to 

have a more flat, realistic and trustworthy response. 

4) A Djikstra algorithm to find the shortest paths between nodes in a graph is 

developed for future implementations. 

 

In this project the first three improvements here proposed were developed and used 

in order to optimize the first algorithm developed and presented in section 7. The results of 

these improvements will also be presented and discussed. Then, Djikstra’s algorithm will be 

introduced for future works. 

 

8.1. Reaching α=0 
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Analyzing the formula of the derivative of 𝛼 when the steering angle is zero (𝜑(𝑡) =

0, ∀𝑡) and the velocity is a positive constant, it can be understood the behavior of the trailer 

when riding a straight line: 

𝛼̇(𝑡) =  𝑣(𝑡) ∗ [
𝑡𝑎𝑛𝜑(𝑡)

𝐿1
−

sin 𝛼(𝑡)

𝐿2
] = −

𝑣𝑠𝑖𝑛𝛼(𝑡)

𝐿2
 

It is a first order non-linear ordinary differential equation of kind 𝑦′ + 𝑘 ∗ 𝑠𝑖𝑛𝑦 = 0 , 

where 𝑘 is 
𝑣

𝐿2
. With help of a mathematical solver (24), its solution can be found and 

corresponds to: 

𝛼(𝑡) = 2 cot−1(𝑒𝑐1+𝑘𝑡)  

The inverse of the cotangent function tends to zero when the time tends to infinity. 

Therefore it proves that more the articulated vehicle rides forward in a straight line more 𝛼 

approximates zero, the proposed configuration. 

This way, the developed optimization proposes to the algorithm to plan, if possible, a 

trajectory where the end configuration is 20 meters distant from the actual goal and the tractor 

is aligned with the desired orientation. After that, the vehicle only needs to drive forward 20 

meters and whatever is the value of 𝛼, it will tends to zero. The straight line distance is 

variable, meaning it could be a shorter path in case the map does not have a free 20 meters 

space around the final configuration. 

 

8.2. Curves optimization 

 

The curves optimization works after the planner has already found the complete 

trajectory between the start and the end configurations. Then, the optimization step analyzes 

every four subsequent Nodes contained in the final path. If it finds three curves in a row 

(generally, RLR or LRL, using the notation presented 7.4.2), the algorithm tries to connect the 

first Node with the last Node using the Dubins path algorithm. This way, if the steering angle 

proposed to the Dubins planner is the correct one, the originated Dubins path will contain 

either two short curves and a long straight line or a single long curve, a short straight line and 

a short curve (if a CSC is the minimum cost path calculated by the Dubins planner). 

As it is difficult to estimate the best steering angle for an arbitrary set of curves, eight 

Dubins paths are generated each one under a different steering angle. The steering angles are 

between 0.2 ∗ (𝑅1 + 𝑅2 + 𝑅3) and 2 ∗ (𝑅1 + 𝑅2 + 𝑅3), where 𝑅1, 𝑅2, 𝑅3 denote the radius of 

each curve. In fact, this is a good approximation. For example, if we consider three curves 
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with the same radius 𝑅, they could be replaced by a single curve of radius 3𝑅 approximately, 

which lays inside the boundaries of the tested steering angles. The Figure 25 illustrates better 

the given example: 

 

 

Figure 25: Three opposite curves being replaced by a single one.  

 

The lengths of the generated paths are then compared and the shortest path is 

selected as optimal. If this path is shorter than the original 3-curves length, the three curves 

are replaced in the Tree by the Dubins path output. 

This optimization shows that even after having the final path, many optimizations 

might be done by reconnecting Nodes in different ways. A complete optimization would not 

only consider three subsequent curves, but would compare each Node of the path with the rest 

of the entire path, trying to find the lowest cost. This project has not considered a large scope 

of optimization algorithms, but this one can show that there are plenty possibilities to find a 

better trajectory. 

 

8.3. Results with proposed improvements 

 

When applying the optimizations described in 8.1 and 8.2, clear changes may be seen 

in the trajectory planned. The figure below describes a simulation whose results are similar to 

that presented in section 7.5 but with the optimizations applied. The final goal continues being 

[350.0𝑚, 350.0𝑚, 0. °, 0. °], the simulation time was 60.446s and the optimization time, 

1.636s. 
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Figure 26: Optimized planned trajectory. 

 

The yellow line keeps representing the Dubins path, but it also represents the final 

straight line that makes 𝛼 tends to zero. The first planned trajectory is still represented in red, 

but the optimization traces a new purple trajectory over it. Near the middle of the figure, a set 

of three curves is replaced by a new Dubins path, which generates two short curves and one 

long straight line just as explained in 8.2. This time, the vehicle reaches the final position at 

(349.985 𝑚, 350.024 𝑚, 0. °, −0.026°). The precision is mainly improved when analyzing 

the orientation of the vehicle. Now, the α angle has a precision in the order of hundredth 

degrees. 

It can be verified that the trajectory is very close to one of the obstacles. It may be a 

problem when simulating in Amesim, but conclusions may be taken only after simulation. 

For that purpose, the generated path is converted in (𝑥, 𝑦, 𝑟𝑎𝑑𝑖𝑢𝑠) points that are 

inputted in Amesim. The simulation runs through 600 seconds and the variables are printed 
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each 0.05 second, even though the integrator is set with a variable step. The obtained 

trajectory is showed in Figure 27: 

 

 

Figure 27: Optimized trajectory generated in Amesim. 

 

As it can be easily verified, the results are way better than the first results obtained. 

The number of curves – and mainly subsequent curves – is reduced, so the vehicle behaves in 

a more realistic way once the controller has time enough to control the errors in relation to the 

reference trajectory. 

Also, analyzing the final point at 574.308 seconds, the vehicle stops at the Cartesian 

position of (350.0009 𝑚, 350.1074 𝑚). It means the controller can precisely handle the task 

of reaching its goal. Indeed, the position error is in the order of only 10 centimeters. 

Moreover, the orientation of the tractor (𝜃 = 𝜃1) and the trailer (𝜃2) can be observed 

as well as the 𝛼 angle representing the relative bend of the trailer. Figure 28 below shows not 

only these three angles, but also its derivatives, i.e, the rotary velocity correspondent to each 

angle: 
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Figure 28: Euler angles and rotary velocities of the tractor and the trailer vehicles 

 

The final orientation of the tractor values 𝜃1 =  −2.74836°, the final orientation of 

the trailer values 𝜃2 = 0.400917° and the difference between them is 𝛼 =  −3.14928°. 

Therefore, comparing these values with the expected results (𝜃1, 𝜃2, 𝛼) = (0. °, 0. °, 0. °), it 

can be concluded that the controller can also reach the angle goals with a good precision. The 

total error is approximately in the order of 4 degrees. 

Concerning the rotary velocities, it may be observed that the orientation angle 

variations (𝜃̇) do not exceed 10 degrees/s and the hitch angle variation (𝛼̇) does not exceed 5 

degrees/s. Therefore, the rotary velocities keep inside a good safety margin and do not attain 

huge values that could compromise the hitch between the tractor and the trailer. 

A last analysis consists of verifying if the vehicle collides with the obstacles or not 

since the planner generated a path in which the vehicle gets very close to one of them. For 

that, Figure 29 shows the path of all the corners of the vehicle as well as its center of gravity. 

A zoom in the critical part of the path is done in order to let it easier to analyze. 
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Figure 29: Completed description of the driven path by the center of gravity of the vehicle as well as all of its 

corners. (CoG: center of gravity, FR: tractor’s front right corner, FL: tractor’s front left corner, RR: tractor’s rear 

right corner, RL: tractor’s rear left corner, Trailer R: trailer’s rear right corner, Trailer L: trailer’s rear left corner) 

 

The boundaries of the nearest obstacle are 

[(250, 250), (250, 300), (300, 300), (300, 250)], therefore there’s no collision. Indeed, it 

can be seen that the closet point to the obstacle is (274.6088 𝑚, 302.2755 𝑚) in which the 

left side of the tractor drives a little bit more than 2 meters distant of the obstacle. Perhaps, if 
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the generated trajectory was curlier, the Amesim controller would not have been able to avoid 

the obstacle and a collision would have happened. It highlights the importance of safety when 

planning a vehicle trajectory and shows that the planner should be very careful when avoiding 

obstacles, as well as the vehicle controller that needs to be prudent and precise. 

 

8.4. PIDs parameters optimization 

 

Even though the Amesim controller contains two PID controllers whose outputs are 

summed in order to control the steering angle, this optimization tries to tune better only one of 

them, the PID that controls the distance to the reference trajectory. Until now, this PID was 

actually a PI, where 𝒌𝒑 = 𝟓𝟎 and 𝒌𝒊 = 𝟎. 𝟏, the derivative gain was set to zero. 

Some tuning techniques could be used to find the PID gains such as the Ziegler-

Nichols method. However, as already mentioned, the built-in Amesim function does not 

contain two pure PIDs solely, but it is actually a block that tries to make several corrections. 

This way, a fine tuning would consider the whole block and not only one PID. Thus, a manual 

tuning was decided to be done, inputting different gain values, simulating them and 

comparing their results. 

The next image illustrates one of the comparative simulations done. The original PI 

has been compared to a pure PD and two other PIDs in order to try to identify the influence of 

each gain in the controller behavior.  

 

 

Figure 30: Comparison among the simulated PIDs 
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The pure PD (𝒌𝒑 = 𝟓𝟎, 𝒌𝒊 = 𝟎, 𝒌𝒅 = 𝟐𝟎.) and one of the PID’s (𝒌𝒑 = 𝟓𝟎, 𝒌𝒊 =

𝟎. 𝟓, 𝒌𝒅 = 𝟏𝟎.) presented an additional error in relation to the reference trajectory, even if 

they seemed to have a less intense overshooting. The final point where 𝑥 = 350 𝑚 is further 

from the goal if compared with the original PI. 

The other PID (𝒌𝒑 = 𝟓𝟎, 𝒌𝒊 = 𝟎. 𝟓, 𝒌𝒅 = 𝟓.) has a behavior very similar to the 

original PI. Indeed, their differences consist only on the added derivative gain. The generated 

paths present almost the same behavior. But when comparing the final point, the PID manages 

to get closer to the goal. As the figure shows, its final point is (350 𝑚, 350.041 𝑚), closer 

than the final goal of the PI, (350.0009 𝑚, 350.1074 𝑚). The final angles of the PID 

maintained almost unchanged if compared to those of the PI. Even if the difference is 

minimal, this comparison shows that even the controller can be improved in order to 

guarantee a trustier driven path. 

 

8.5. Djikstra’s algorithm 

 

The trajectory planning problem often includes map discretization. It means that the 

environment is discretized once and then its configuration is stored. Whenever a new 

trajectory planning is needed, the discretization is not necessary anymore because the map is 

stored. It allows choosing a different start point at each simulation and does not impose a 

fixed one. Moreover, the map could present circularities, so a Node would not have only one 

parent as the developed algorithm requires. At this point, the Djikstra’s algorithm is 

fundamental in order to find the best solution. When a Tree allows multiple parents, it faces 

the “shortest path” problem and the Djikstra’s algorithm may solve it. For the moment, the 

developed Djikstra’s algorithm is not implemented because the project has restricted its 

application to cases in which the start and the end points are known as well as the surrounding 

environment but could certainly be used in a future work. 

This algorithm is commonly used for finding the shortest paths between nodes in a 

graph. Normally, the algorithm has a computational cost equal to 𝑛2 (25), where 𝑛 

corresponds to the number of nodes. However when the algorithm is implemented in parallel 

with a priority queue (26), the computational cost is considerably reduced which makes this 

kind of search a very powerful method to use in a trajectory planning problem. 

In this project, a Djikstra’s algorithm has been developed along with a binary “min 

heap”, which turns out to be a priority queue method. A min heap is a tree-based data 
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structure that satisfies the following property: if P is a parent node of node C, then the value 

of node P is less than or equal to the value of the node C (27). So the lowest value is always 

the root’s value. A heap is generally constructed using a single array alone. The first element 

contains the root, the next two elements contain its children, the next four elements contain 

their children and so on. So, the children of a node at position 𝑘 will be at position 2𝑘 +  1 

and 2𝑘 +  2. 

The Djikstra’s algorithm has a quite simple logic. A node is defined as the source 

and the algorithm will find the shortest path to all the other nodes of the tree. For this, the 

algorithm initially assigns the distance between the source and all other nodes as infinity. 

Then, it iteratively visits the nodes, calculates a tentative distance to them and assigns this 

distance to the node if the distance is smaller than its current one. 

 

9. CONCLUSION 

 

The intention of this project has always been to work with cutting-edge technologies 

and recent subjects that are currently being studied. The Advanced Driver-Assistance Systems 

are surely technologies that will be responsible to cause several changes in the future world 

and modify the way the society interacts with its environment. Thanks to the industry, 

represented here by Siemens, the project could receive insights and the context of the project 

was structured better, leading the students to work with a real problem faced by many 

companies and researchers: the trajectory planning for articulated vehicles. 

The three committed parts– students, industry and university – decided to study the 

existent techniques of trajectory planning and develop a tool able to generate feasible 

trajectories for an articulated vehicle given a known environment. After an extensive analysis 

of the state of the art, it was decided that the Rapidly-exploring Random Tree (RRT) would be 

the guideline method in order to develop the planner. Due to its relevance in the trajectory 

planning world, probabilistic completeness, kinematics feasibility and several optimizations 

methods, the method was implemented and confirmed its capacity of providing solid results. 

Moreover, once the project involves articulated vehicles, a kinematics study of this 

kind of vehicle was necessary. Describing its movement correctly and identifying the 

kinematics constraints is a main role to guarantee a feasible solution. The vehicle modeling 

also permitted the understanding of different degrees of details when doing a simulation. For 

instance, the Amesim software proved that a much more complete modeling could be done, 
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allowing the analysis of several different variables as well as the understanding in a 

trustworthy way what would be the behavior of a real vehicle if it tried to ride the generated 

trajectory. 

The kinematics modeling and the planner algorithm were assembled in order to 

generate a final solution. The results were very satisfactory and the presented use case could 

prove it. The planner was able to generate a feasible, realistic and accurate trajectory, with a 

precision in the order of hundredth of centimeters and degrees. The final results in the 

Amesim simulation obtained an accuracy of 10cm in relation to the Cartesian coordinates and 

less than 4 degrees in relation to the orientation angles of the vehicles, proving that it is very 

important to have a trusty hardware. Both Amesim and algorithm simulations managed to 

avoid collision with environment obstacles.  

Also, the algorithm could be also optimized which is a great achievement once the 

optimization is a very important part in any software development. Three main improvements 

were implemented and used in this project. It included tending the α angle to zero, 

reconnecting curves of the generated trajectory and tuning the PID contained on the Amesim 

controller responsible for following the path outputted by the planner. 

Therefore, it can be concluded that the project have done a great part of what it has 

proposed at the beginning of its timeline. Doubtlessly, it still leaves space for future works in 

which more optimizations could be done such as path reconnections and smoothing, modeling 

of the reverse movement of an articulated vehicle and Amesim controller improvements in 

order to find the best PID parameters that rides a more realistic path. A hardware 

implementation could be aimed in order to compare the Amesim simulation with real-life test. 

Finally, the developed solution could be used in order to study a real use case where the 

generation of trajectories for articulated vehicle is very important. 
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